Molecular Dynamics Study of Mass Transport Properties of Liquid Cu-Ag Alloys

Article Preview

Abstract:

In this study, mass transport properties of liquid Cu-Ag alloys are investigated over wide temperature and composition ranges. The calculations are performed within the framework of the Green-Kubo (GK) formalism by using equilibrium molecular dynamics (MD) simulations along with one of the most reliable embedded-atom method potentials for this system developed by [P. Williams et al.: Modell. Simul. Mater. Sci. Eng. vol. 14 (2006), p. 817]. The approach employed allows for evaluation of the components’ self-diffusion coefficients as well as the phenomenological coefficient for mass transport Lcc. The results obtained in this study can be used to predict the kinetics of solidification of real liquid Cu-Ag alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-72

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Ghosh: Acta Mater. vol. 49 (2001), pp.2609-2624.

Google Scholar

[2] L. Zhang, Y. Du, I. Steinbach, Q. Chen, and B. Huang: Acta Mater. vol. 58 (2010), pp.3664-3675.

Google Scholar

[3] R. Powell, W. Roseveare, and H. Eyring: Ind. & Eng. Chem. vol. 33 (1941), pp.430-435.

Google Scholar

[4] J. Frenkel: Kinetic theory of liquids (Dover Publications, 1955).

Google Scholar

[5] S. Chapman and T. G. Cowling: The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases (Cambridge University Press, 1970).

DOI: 10.2307/3609795

Google Scholar

[6] R. Swalin: Acta Metall. vol. 7 (1959), pp.736-740.

Google Scholar

[7] M. H. Cohen and D. Turnbull: J. Chem. Phys. vol. 31 (1959), pp.1164-1169.

Google Scholar

[8] H. Eyring and T. Ree: Proc. Nat. Acad. Sci. vol. 47 (1961), pp.526-537.

Google Scholar

[9] N. H. Nachtrieb: Adv. Phys. vol. 16 (1967), pp.309-323.

Google Scholar

[10] D. C. Wallace: Phys. Rev. E vol. 56 (1997), p.4179.

Google Scholar

[11] B. J. Alder and T. Wainwright: J. Chem. Phys. vol. 31(1959), pp.459-466.

Google Scholar

[12] A. Rahman: Phys. Rev. vol. 136 (1964), p. A405.

Google Scholar

[13] E. V. Levchenko, A. V. Evteev, I. V. Belova, and G. E. Murch: Comput. Mater. Sci. vol. 50 (2010), pp.331-337.

Google Scholar

[14] E. V. Levchenko, A. V. Evteev, D. R. Beck, I. V. Belova, and G. E. Murch: Comput. Mater. Sci. vol. 50 (2010), pp.465-473.

Google Scholar

[15] Y. Mishin, M. Mehl, and D. Papaconstantopoulos: Phys. Rev. B vol. 65 (2002), p.224114.

Google Scholar

[16] A. Kerrache, J. Horbach, and K. Binder: EPL vol. 81 (2008), p.58001.

Google Scholar

[17] S. Stüber, D. Holland-Moritz, T. Unruh, and A. Meyer: Phys. Rev. B vol. 81 (2010), p.024204.

Google Scholar

[18] T. Fang, L. Wang, C. Peng, and Y. Qi: J. Phys.: Condens. Matter vol. 24 (2012), p.505103.

Google Scholar

[19] G. Bonny, R. C. Pasianot, N. Castin, and L. Malerba: Philos. mag. vol. 89 (2009), pp.3531-3546.

Google Scholar

[20] P. Protopapas, H. C. Andersen, and N. Parlee: J. Chem. Phys. vol. 59 (1973), pp.15-25.

Google Scholar

[21] P. Williams, Y. Mishin, and J. Hamilton: Modell. Simul. Mater. Sci. Eng. vol. 14 (2006), p.817.

Google Scholar

[22] M. S. Daw and M. I. Baskes: Phys. Rev. B vol. 29 (1984), p.6443.

Google Scholar

[23] M. S. Daw and M. I. Baskes: Phys. Rev. Lett. vol. 50 (1983), p.1285.

Google Scholar

[24] M. Stott and E. Zaremba: Phys. Rev. B vol. 22 (1980), p.1564.

Google Scholar

[25] J. Nørskov: Phys. Rev. B vol. 26 (1982), p.2875.

Google Scholar

[26] J. Mei, J. Davenport, and G. Fernando: Phys. Rev. B vol. 43 (1991), p.4653.

Google Scholar

[27] A. V. Evteev, E. V. Levchenko, I. V. Belova, R. Kozubski, Z. -K. Liu, and G. E. Murch: Philos. Mag. vol. 94 (2014), pp.3574-3602.

Google Scholar

[28] A. V. Evteev, E. V. Levchenko, I. V. Belova, R. Kozubski, Z. K. Liu, and G. E. Murch: Diffusion Foundations, Vol. 2 (2014), pp.159-189.

Google Scholar

[29] A. V. Evteev, E. V. Levchenko, L. Momenzadeh, Y. Sohn, I. V. Belova, and G. E. Murch: Philos. Mag. vol. 95 (2015), pp.90-111.

Google Scholar

[30] S. R. de Groot and P. Mazur: Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

Google Scholar

[31] A. Allnatt and A. Lidiard: Atomic transport in solids, ed: Cambridge University Press, (1993).

Google Scholar

[32] R. Kubo: J. Phys. Soc. Jpn. vol. 12 (1957), pp.570-586.

Google Scholar

[33] M. S. Green: J. Chem. Phys. vol. 22 (1954), pp.398-413.

Google Scholar

[34] L. S. Darken: Trans. Aime vol. 175 (1948), pp.184-201.

Google Scholar

[35] J. R. Manning: Diffusion Kinetics for Atoms in Crystals ed. Van Nostrand, Princeton (1968).

Google Scholar

[36] L. Onsager: Phys. Rev. vol. 37 (1931), p.405.

Google Scholar

[37] L. Onsager: Phys. Rev. vol. 38 (1931), p.2265.

Google Scholar

[38] A. Einstein: Ann. phys. vol. 17 (1905), pp.549-560.

Google Scholar

[39] M. Von Smoluchowski: Ann. Phys. vol. 326 (1906), pp.756-780.

Google Scholar

[40] Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, and J. Kress: Phys. Rev. B vol. 63 (2001), p.224106.

Google Scholar

[41] A. Suzuki and Y. Mishin: J. Mater. Sci. vol. 40 (2005), pp.3155-3161.

Google Scholar

[42] C. Kittel: Introduction to solid state physics (New York: Wiley-Interscience, 1986).

Google Scholar

[43] A. Meyer: Phys. Rev. B vol. 81 (2010), p.012102.

Google Scholar

[44] V. Leak and R. Swalin: Transactions of the Metallurgical Society of AIME. vol. 230 (1964), p.426.

Google Scholar

[45] I.V. Belova, T. Ahmed, U. Sarder, A.V. Evteev, E.V. Levchenko, and G.E. Murch: Submitted to Philos. Mag. (2016).

Google Scholar