An Overview on Silane Based Metal Pretreatments for Powder Painting

Article Preview

Abstract:

This work provides an overview of organosilane metal pretreatments with a focus on water-based systems. Furthermore, this work aims to point out the key notes for organosilane technology to be fully transferred to industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-29

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhang, Jinming, Development of Environmentally Friendly Non-Chrome Conversion Coatings for Cold-Rolled Steel, phd thesis, Virginia Polytechnic Institute and State University (2003).

Google Scholar

[2] K.L. Mittal, Silanes and Other Coupling Agents, VSP, Utrecht, (1992).

Google Scholar

[3] M. Fedel et al. / Progress in Organic Coatings 66 (2009) 118–128.

Google Scholar

[4] Song, J. And W. J. Van Ooij, Bonding and corrosion protection mechanisms of ɣ-APS and BTSE silane films on aluminum substrates, Journal of Adhesion Science and Technology (2003) 2191-2221.

DOI: 10.1163/156856103772150788

Google Scholar

[5] Cabral. AM, Trabelsi. W. Serra, R, Montemor, MF, Zheludkevich. ML. Ferreira. MGS, The Corrosion Resistance of Hot Dip Galvanised Steel and AA2024-T3 Pre-Treated with Bis-[triethoxysilylpropyl]tetrasulfide Solutions Doped with Ce(NO3)3., Corros. Sci., 48 (2006).

DOI: 10.1016/j.corsci.2006.01.010

Google Scholar

[6] Trabelsi, W, Cecilio, P, Ferreira, MGS, Yasakau. K, Zheludkevich, ML, Montemor, MF, Surface Evaluation and Electrochemical Behavior of Doped Silane Pre-Treatments on Galvanized Steel Substrates., Prog, Org. Coat. 59 (2007) 214-223.

DOI: 10.1016/j.porgcoat.2006.09.013

Google Scholar

[7] Montemor, MF, Cabral, AM, Zheludkevich, ML, Ferreira, MGS, The Corrosion Resistance of Hot Dip Galvanised Steel Pretreated with Bis-Functional Silanes Modified with Microsilica., Surf, Coat Technol., 200 (2006) 2875-2885.

DOI: 10.1016/j.surfcoat.2004.11.012

Google Scholar

[8] Hu. JM. Liu. L. Zhang, JQ. Cao, CN, Electrodeposition of Silane Films on Aluminium Alloys for Corrosion Protection., Prog. Org. Coat., 58 (2007) 265-271.

Google Scholar

[9] Cabral. AM, Duarte, RG, Montemor, MF. Ferreira, MGS. A Comparative Study on the Corrosion Resistance of AA2024^T3 Substrates Pre-Treated with Different Silane Solutions: Composition of the Films Formed., Prog. Org. Coat., 54 (2005) 322-331.

DOI: 10.1016/j.porgcoat.2005.08.001

Google Scholar

[10] Franquet. A, Biesemans, M, Terryn, H, Willem. R, Vereecken. J. Study of the Interaction of Hydrolysed Silane Solutions with Pre-Treated Aluminium Substrates., Surf. Interface Anal., 38 (2006) 172-175.

DOI: 10.1002/sia.2251

Google Scholar

[11] Chico, B, Perez, ML, de la Fuente, D, Morcillo, M, Study of the Behaviour of Silane-base Pretreatments Applied on Aluminium Substrates., Proceedings of the 16th International Corrosion Congress, Peking. China. September (2005).

Google Scholar

[12] Susac, D, Sun, X, Mitchell. KAR, Adsorption of BTSE and [gamma]-APS Organosilanes on Different Microstructural Regions of 2024-T3 Aluminum Alloy., Appl. Surf. Sci., 207 (2003) 40-50.

DOI: 10.1016/s0169-4332(02)01237-0

Google Scholar

[13] Song, J. van Ooij. WJ. Bonding and Corrosion Protection Mechanisms of [gamma]-APS and BTSE Silane Films on Aluminum Substrates.,J. Adhes. Sci. TechnoL, 17 (2003) 2191-2221.

DOI: 10.1163/156856103772150788

Google Scholar

[14] Van Ooij, WJ, Zhu. D, Electrochemical Impedance Spectroscopy of Bis-[triethoxysilypropyl]tetrasulfide on Al 2024-T3 Substrates., Corrosion, 57 (2001) 413-27.

DOI: 10.5006/1.3290365

Google Scholar

[15] Deflorian, F, Rossi. S. Fedrizzi, L, Silane Pre-Treatments on Copper and Aluminium., Electrochim. Acta, 51 (2006) 6097-6103.

DOI: 10.1016/j.electacta.2006.02.042

Google Scholar

[16] Van Schaftinghen, T, Le Pen, C, Terryn, H, Horzenberger, F. Investigation of the Barrier Properties of Silanes on Cold Rolled Steel., Electrochim. Acta, 49 (17-18) 2997-3004 (2004).

DOI: 10.1016/j.electacta.2004.01.059

Google Scholar

[17] Sundararajan, GP. van Ooij. WJ. Silane Based Pretreatments for Automotive Steels., Surf, Eng., 16 (2000) 315-320.

DOI: 10.1179/026708400101517305

Google Scholar

[18] Yuan, W, van Ooij, WJ, Characterization of Organofunctional Silane Films on Zinc Substrates.,J. Colloid Interface Sci, 185(1997) 197-209.

DOI: 10.1006/jcis.1996.4604

Google Scholar

[19] Sinapi, F, Forget, L, Delhalle, J, Mekhalif, Z, Self-assembly of (3-Mercaptopropyl)trimethoxysilane on Polycrystalline Zinc Substrates towards Corrosion Protection., Appl. Surf. Sci, 212-213 (2003) 464-471.

DOI: 10.1016/s0169-4332(03)00142-9

Google Scholar

[20] Bexell U, Mikael Grehk, T, A Corrosion Study of Hot-dip Galvanized Steel Sheet Pre-Treated with [gamma]-Mercaptopropyl-trimethoxysilane., Surf. Coat. Technol., 201 (2007) 4734-4742.

DOI: 10.1016/j.surfcoat.2006.10.014

Google Scholar

[21] Montemor, MF, Rosqvist, A, Fagerholm, H, Ferreira, MGS. The Early Corrosion Behaviour of Hot Dip Galvanised Steel Pre-Treated with Bis-l, 2-(triethoxysilyl)ethane., Prog. Org. Coat., 51 (2004) 188-194.

DOI: 10.1016/j.porgcoat.2004.07.011

Google Scholar

[22] Puomi, P, Fagerholm, H, Characterization of Hot-dip Galvanized (HDG) Steel Treated with [gamma]-UPS, VS. and Tetrasulfide.,J. Adhes. Set. Technol. 15 (2001) 509-533.

DOI: 10.1163/156856101300189907

Google Scholar

[23] Puomi. P, Fagerholm, H, Characterization of Hot-dip Galvanized (HDG) Steel Treated with Bis-l, 2-(triethoxysilyl)ethane and [gamma]-Aminopropyltriethoxysilane.,J. Adhes. Sci. Technol., 15 (2001) 869-888.

DOI: 10.1163/15685610152542342

Google Scholar

[24] Kim, HJ, Zhang, J, Yoon, RH, Candour., R, Development of Environmentally Friendly Nonchrome Conversion Coating for Electrogalvanized Steel., Surf. Coat. Technol., 188-189 (2004) 762-767.

DOI: 10.1016/j.surfcoat.2004.07.047

Google Scholar

[25] Fedel. M, Olivier, M. Poelman, M. Deflorian, F, Rossi, S, Druart, ME, Corrosion Protection Properties of Silane Pre-Treated Powder Coated Galvanized Steel., Prog. Org. Coat. 66(2009) 118-128.

DOI: 10.1016/j.porgcoat.2009.06.011

Google Scholar

[26] Komh, G, Lu, J, Wu. H, Post Treatment of Silane and Cerium Salt as Chromate Replacers on Galvanized Steel., 7. Rare Earths, 27 (2009) 164-168.

DOI: 10.1016/s1002-0721(08)60213-6

Google Scholar

[27] Cecchetto, L, Denoyelle, A, Delabouglise. D. Petit. JP, A Silane Pre-Treatment for Improving Corrosion Resistance Performances of (Emeraldine Base-Coated Aluminium Samples in Neutral Environment., Appl. Surf Sci. 254 (2008) 1736-1743.

DOI: 10.1016/j.apsusc.2007.07.128

Google Scholar

[28] Montemor, MF, Ferreira, MGS, Electrochemical Study of Modified Bis-[triethoxysilylpropyl]tetrasulfide Silane Films Applied on the AZ31 Mg Alloy., Electrochim. Acta, 52 (2007) 7486-7495.

DOI: 10.1016/j.electacta.2006.12.086

Google Scholar

[29] Montemor. MF, Ferreira, MGS. Analytical and Microscopic Characterisation of Modified Bis-[triethoxysilylpropyl]tetrasulphide Silane Films on Magnesium AZ31 Substrates., Prog. Org. Coat., 60 (2007) 228-237.

DOI: 10.1016/j.porgcoat.2007.07.019

Google Scholar

[30] Zucchi. F, Grassi, V, Frignani, A, Monticelli. C. Trabanelli, G. Influence of a Silane Treatment on the Corrosion Resistance of a WE43 Magnesium Alloy., Surf Coat. Technol., 200 (2006) 4136-4143.

DOI: 10.1016/j.surfcoat.2005.02.073

Google Scholar

[31] Zhang. J, Wu, C, Corrosion Protection Behaviour of AZ31 Magnesium Alloy with Cathodic Electrophoretic Coating Pretreated by Silane., Prog. Org. Coat., 66 (2009) 387-392.

DOI: 10.1016/j.porgcoat.2009.09.001

Google Scholar

[32] Franquet, A, Terryn, H, Vereecken, J, Composition and Thickness of Non-Functional Organosilane Films Coated on Aluminium Studied by Means of Infra-red Spectroscopic Ellipsometry., Thin Solid Films, 441 (2003) 76-84.

DOI: 10.1016/s0040-6090(03)00886-1

Google Scholar

[33] Chico, B, Perez, ML, de la Fuente, D. Morcillo, M. Effect of Silane Solution Concentration on the Anticorrosive Protection of Pretreatments Applied on Steel., In: Fedrizzi. L. Terryn. H. Simoes, A (eds. ) Innovative Pre-Treatment Techniques to Prevent Corrosion of Metallic Surfaces, Woodhead Publishing Ltd., Cambridge, 2007, pp.148-157.

DOI: 10.1533/9781845693688.148

Google Scholar

[34] Franquet. A, De Laet. J. Schram. T. Terryn. H. Subramanian. V, van Ooij. WJ. Vereecken. J. Determination of the Thickness of Thin Silane Films on Aluminium Surfaces by Means of Spectroscopic Ellipsometry., Thin Solid Films. 384 (2001) 37-45.

DOI: 10.1016/s0040-6090(00)01805-8

Google Scholar

[35] Franquet. A, Le Pen. C, Terryn. H. Vereecken. J. Effect of Bath Concentration and Curing Time on the Structure of Non-Functional Thin Organosilane Layers on Aluminium., Electrochim. Acta. 48 (2003) 1245-1255.

DOI: 10.1016/s0013-4686(02)00832-0

Google Scholar

[36] Horner, MR. Boerio, FJ, Clearfield, HM, An XPS Investigation of the Adsorption of Aminosilanes onto Metal Substrates., J. Adhes. Sci. Technol., 6 (1992) 1-22.

DOI: 10.1163/156856192x00016

Google Scholar

[37] Romano, A.; Fedel, M.; Deflorian, F. Silane sol−gel film as pretreatment for improvement of barrier properties and filiform corrosion resistance of 6016 aluminium alloy covered by cataphoretic coating. Pro. Org. Coat, 72 (2011), 695−702.

DOI: 10.1016/j.porgcoat.2011.07.012

Google Scholar

[38] Montemor, M. F.; Ferreira, M. G. S. Cerium salt activated nanoparticles as fillers for silane films: Evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochim. Acta, 52, (2007) 6976−6987.

DOI: 10.1016/j.electacta.2007.05.022

Google Scholar

[39] Toxicological Profile for Chromium. Report No. ATSDR/ TP-88/10. Agency for Toxic Substances, US Public Health Service, July 1989 Twite, RL, Bierwagen, GP, 'Review of Alternatives to Chromate for Corrosion Protection of Aluminum Aerospace Alloys., Prog. Org. Coat., 33 (1998).

DOI: 10.1016/s0300-9440(98)00015-0

Google Scholar

[40] Van Ooij, WJ, Zhu, D, Palanivel, V, Lamar, JA, Stacy, M, Overview: The Potential of Silanes for Chromate Replacement in Metal Finishing Industries., Silicon Chem., 3 (2006) 11-30.

DOI: 10.1007/s11201-005-4407-6

Google Scholar

[41] Van Ooij. WJ, Zhu. D, Stacy. M, Seth, A. Mugada, T, Gandhi, J, Puomi, P, Corrosion Protection Properties of Organofunctional Silanes-An Overview., Tsinghua Sci. Technol., 10 (2005) 639-664.

DOI: 10.1016/s1007-0214(05)70134-6

Google Scholar

[42] Vignesh Palanivel, Danqing Zhu, Wim J. van Ooij, Progress in Organic Coatings 47 (2003) 384–392.

Google Scholar

[43] M. Poelman, et al., Surf. Coat. Technol. (2014) http: /dx. doi. org/10. 1016/j. surfcoat. 2014. 06. 021.

Google Scholar

[44] N. R. Naderi, M. Saremi, S. Y. Arman, M. Fedel, F. Deflorian, J Sol-Gel Sci Technol (2014) 70: 329–338.

DOI: 10.1007/s10971-014-3286-8

Google Scholar

[45] Ogarev V. A., Selector S.L., Progress in Organic Coatings 21 (1992) 135-187.

Google Scholar

[46] J. Steinmetz et al., EP 675 128 B1; H. Mack et al., EP953 591 B1; B. Standke et al., EP 1031 593 B1; B. Standke et al., EP 716 127 B1; B. Standke et al., EP 716 128 B1 (water based silane system patent first).

DOI: 10.1353/tfr.2017.0404

Google Scholar

[47] Xiaochao Xian, Minglu Chen, Lixin Li, Zhen Lin, Jun Xiang, Shuo Zhao, Corrosion Science 74 (2013) 283-289.

Google Scholar

[48] Wang, Y., Puomi, P. and W. J. Van Ooij, Effect of substrate cleaning solution pH on the corrosion performance of silane coated cold rolled steel, Journal of Adhesion Science and Technology 21 (2007) 935-960.

DOI: 10.1163/156856107781393901

Google Scholar

[49] R. Naderi, M. Fedel, T. Urios, M. Poelman, M.G. Olivier, F. Deflorian, Surf. Interface Anal. 45 (2013) 1457–1466.

DOI: 10.1002/sia.5249

Google Scholar

[50] Yang Lixia, Feng Jun, Zhang Wengwang, Qu June, Applied Surface Science, 256 (2010) 6787-6794.

Google Scholar

[51] Yang Lixia, Feng Jun, Zhang Wenguang, Qu June, Applied Surface Science, 257 (2010) 990-996.

Google Scholar

[52] Li Guoli, Wang Xueming, Li Aiju, Wang Weiqiang, Zheng Liqiang, Surface and Coatings Technology, 201 (2007) 9571-9578.

Google Scholar

[53] Najmeh Asadi, Reza Naderi, Mohsen Saremi, Ind. Eng. Chem. Res. 53 (2014) 10644−10652.

Google Scholar

[54] Fernandes B.S., Souza K., Aoki V., Melo H., Amado F., Electrochimica Acta 124 (2014) 137-142.

Google Scholar

[55] M. Fedel, et al., Compatibility between cataphoretic electro-coating and silane surface layer for the corrosion protection of galvanized steel, Prog. Org. Coat. (2010) doi: 10. 1016/j. porgcoat. 2010. 04. 003.

DOI: 10.1016/j.porgcoat.2010.04.003

Google Scholar

[56] Suegama, P.H., Sarmento V.H.V., Montemor M.F., Benedetti A.V., de Melo H.G., Aoki. IV. Influence of Cerium(IV) Ions on the Mechanism of Organosilane Polymerization and on the Improvement of its Barrier Properties., Electrochim. Acta. 54 (2009).

DOI: 10.1016/j.electacta.2008.11.007

Google Scholar

[57] Palanivel, V, Huang, Y, van Ooij. WJ, Effects of Addition of Corrosion Inhibitors to Silane Films on the Performance of AA2024-T3 in a 0. 5 M NaCI Solution., Prog. Org. Coat. 53 (2005) 153-168.

DOI: 10.1016/j.porgcoat.2003.07.008

Google Scholar

[58] Zhu, D, van Ooij. WJ. Corrosion Protection of Metals by Water-Based Silane Mixtures of Bis-[trimethoxysilyipropyl]amine and Vinyltriacetoxysilane., Prog. Org. Coat., 49 (2004) 42-53.

DOI: 10.1016/j.porgcoat.2003.08.009

Google Scholar

[59] Zhu. D, van Ooij. WJ. Structural Characterization of Bis-[trimethoxysilylpropyl] tetrasuliide and Bis-[trimethoxysi-lylpropyl]amine Silanes by Fourier-Transform Infrared Spectroscopy and Electrochemical Impedance Spectroscopy. , J. Adhes. Sci Technol., 16 (2002).

DOI: 10.1163/156856102320256873

Google Scholar

[60] Pantoja. M, Diaz-Benito. B. Velasco. F. Abenojar. J. del Real. JC. Analysis of Hydrolysis Process of [gamma]-Methacryloxypropyltrimethoxysilane Its Influence on the Formation of Silane Coatings on 6063 Aluminium Alloy., Appl. Surf. Sci., 255 (2009).

DOI: 10.1016/j.apsusc.2009.02.022

Google Scholar

[61] Abel. ML. Joannic. R. Fayos. M. Lafontaine. E, Shaw, SJ. Watts. JF. Effect of Solvent Nature on the Interaction of [gamma]-Glycidoxypropyltrimethoxy Silane on Oxidised Aluminium Surface: A Study by Solution Chemistry and Surface Analysis., Int. J. Adhes. Adhes., 26 (2006).

DOI: 10.1016/j.ijadhadh.2002.10.001

Google Scholar

[62] Chico. B, Galvan. JC, de la Fuente, D, Morcillo. M, Electrochemical Impedance Spectroscopy Study of the Effect of Curing Time on the Early Barrier Properties of Silane Systems Applied on Steel Substrates., Prog. Org. Coat., 60 (2007) 45-53.

DOI: 10.1016/j.porgcoat.2007.06.007

Google Scholar

[63] Franquet, A. Terryn. H, Vereecken, J. IRSE Study on Effect of Thermal Curing on the Chemistry and Thickness of Organosilane Films Coated on Aluminium., Appl. Surf. Sci., 211 (2003) 259-269.

DOI: 10.1016/s0169-4332(03)00258-7

Google Scholar

[64] Williams. B, A Systematic Study of the Effect of Deposition Conditions for Organosilane Coverage on Zinc-Coated Steel. " Proceedings of the 47th Chemists, Conference, Scarborough. UK, June (1995).

Google Scholar

[65] A Franquet, PhD thesis, Vrje Universiteit Brussel, Faculty of Applied Sciences, (2002).

Google Scholar

[66] W. Yimin, PhD thesis, University of Cincinnati, Department of Chemical and Materials Engineering, (2007).

Google Scholar

[67] G. Pan, PhD thesis, University of Cincinnati, Department of Chemical and Materials Engineering, (2006).

Google Scholar

[68] C. Shivane, Master of Science thesis, University of Cincinnati, Materials Science and Engineering, (2006).

Google Scholar

[69] J. Karlsson, Master of Science thesis, Chalmers University of Technology, Department of Chemical and Biological Engineering, (2011).

Google Scholar

[70] M. Fedel, PhD thesis, University of Trento, Department of Materials Engineering and Industrial Technologies, (2010).

Google Scholar

[71] D. Zhu, PhD thesis, University of Cincinnati, Materials Science and Engineering, (2005).

Google Scholar

[72] Seth A., PhD thesis, University of Cincinnati, Materials Science and Engineering, (2006).

Google Scholar

[73] Seth A., W. J. Van Ooij, Journal of Materials Engineering and Performance, 13 (2004), 468-474.

Google Scholar

[74] Trabelsi, W.; Cecilio, P.; Ferreira, M. G. S.; Montemor, M. F. Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pretreatment of galvanised steel substrates. Prog. Org. Coat. 54, (2005) 276−284.

DOI: 10.1016/j.porgcoat.2005.07.006

Google Scholar

[75] Phanasgaonkar, A., Raja, V.S., Influence of curing temperature, silica nanoparticles and cerium on surface morphology and corrosion behaviour of hybrid silane coatings on mild steel. Surf. Coat. Technol. 203 (2009), 2260–2271.

DOI: 10.1016/j.surfcoat.2009.02.020

Google Scholar

[76] Huttunen-Saarivirta, E., Vaganov, G.V., Yudin, V.E., Vuorinen, J., Characterization and corrosion protection properties of epoxy powder coatings containing nanoclays. Prog. Org. Coat. 76 (2013), 757–767.

DOI: 10.1016/j.porgcoat.2013.01.005

Google Scholar

[77] Palanivel, V., Zhu, D., van Ooij, W.J., Nano particle-filled silane films as chromate replacements for aluminum alloys. Prog. Org. Coat. 47 (2003), 384–392.

DOI: 10.1016/j.porgcoat.2003.08.015

Google Scholar

[78] Deflorian, F., Rossi, S., Fedel, M., Motte, C., Electrochemical investigation of high performance silane sol-gel films, containing clay nanoparticles. Prog. Org. Coat. 69 (2010), 158–166.

DOI: 10.1016/j.porgcoat.2010.04.007

Google Scholar

[79] Pan G., Schafer D. W., Ilavsky J., Journal of Colloid and Interface Science 302 (2006) 287-293.

Google Scholar

[80] M. Fedel, E. Callone, S. Dire, F. Deflorian, M.G. Olivier, M. Poelman, Electrochimica Acta 124 (2014), 90-99.

DOI: 10.1016/j.electacta.2013.11.006

Google Scholar

[81] Motte C. , Poelman M., Roobreck A., Fedel M., Deflorian F., Olivier M. G, Progress in Organic Coatings 74 (2012) 326-333.

DOI: 10.1016/j.porgcoat.2011.12.001

Google Scholar

[82] Olivier M.G., Fedel M., Sciamanna V., Vandermiers C., Motte C., Poelman M., Deflorian F., Progress in Organic Coatings 72 (2011) 15-20.

DOI: 10.1016/j.porgcoat.2010.11.022

Google Scholar

[83] N. Asadi, R. Naderi, M. Saremi, Applied Clay Science, 95 (2014), 243-251.

Google Scholar

[84] Liu Y., Cao H., Yu Y. , Chen S., Int. J. Electrochem. Sci. 10 (2015) 3497-3509.

Google Scholar

[85] Nematollahi M., Heidairan M., Peikari M., Kassiriha S. M., Arianpouya N., Esmaeilpour M., Corrosion Science 52 (2010) 1809-1817.

DOI: 10.1016/j.corsci.2010.01.024

Google Scholar

[86] Zadeh M. A., van der Zwaag S., Garcia S. J., Self Healing Materials DOI: 10. 2478/shm-2013-0001, (2013).

Google Scholar

[87] Zadeh M. A., PhD thesis, University of Delft, (2016).

Google Scholar

[88] M. Fedel, et al., Surface Coating Technology (2014), http: /dx. doi. org/10. 1016/j. surfcoat. 2014. 07. 020.

Google Scholar

[89] F. Ansari, R. Naderi, C. Dehghanian, Applied Clay Science 114 (2015) 93–102.

Google Scholar