[1]
A. Shazad and M. Uzair, Utilization of Solar Energy for Cooling Applications: a Review, Mem. Investig. Eng., vol. 24, pp.69-91, 2023.
DOI: 10.36561/ing.24.6
Google Scholar
[2]
I. Arsie, A. Cricchio, V. Marano, C. Pianese, M. De Cesare, and W. Nesci, Modeling Analysis of Waste Heat Recovery via Thermo Electric Generators for Fuel Economy Improvement and CO2 Reduction in Small Diesel Engines, SAE Int. J. Passeng. Cars-Electron. Electr. Syst., vol. 7, no. 2014-01-0663, pp.246-255, 2014.
DOI: 10.4271/2014-01-0663
Google Scholar
[3]
A. Lefebvre and S. Guilain, "Transient Response of a Turbocharged SI Engine with an Electrical Boost Pressure Supply," SAE Tech. Paper, 2003.
DOI: 10.4271/2003-01-1844
Google Scholar
[4]
I. Arsie, A. Cricchio, C. Pianese, V. Ricciardi, and M. De Cesare, Evaluation of CO2 Reduction in SI Engines with Electric Turbo-Compound by Dynamic Powertrain Modelling, IFAC-Papers Online, vol. 48, no. 15, pp.93-100, 2015.
DOI: 10.1016/j.ifacol.2015.10.014
Google Scholar
[5]
V. Singhal, D. Bhardwaj, Study on Combined Cycle Power Plant with Change in Gas Turbine Parameters, Int. J. Enhanced Res. Sci. Technol. Eng., Vol. 3, Issue 7, p.171–178, 2014.
Google Scholar
[6]
S. Najjar, M. Akyurt, Heat Recovery Systems and CHP, Appl. Therm. Eng., Vol. 14, Issue 2, p.93–223, 1994.
Google Scholar
[7]
J. S. Jadhao, D. G. Thombare, Review on Exhaust Gas Heat Recovery for I.C. Engine, Int. J. Eng. Innov. Technol., Vol. 2, Issue 12, 2013.
Google Scholar
[8]
M. Kanoglu, I. Dincer, Performance Assessment of Cogeneration Plants, Univ. of Gaziantep & Univ. of Ontario Institute of Technology, 2013.
Google Scholar
[9]
M. Feidt, M. Costea, Energy and Exergy Analysis and Optimization of CHP Systems, Energies, Vol. 5, p.3701–3722, 2012.
DOI: 10.3390/en5093701
Google Scholar
[10]
N Galanis, E. Cayer, P. Roy, E.S. Denis, M. Désilets, Electricity Generation from Low Temperature Sources, J. Appl. Fluid Mech., Vol. 2, No. 2, p.55–67, 2009.
Google Scholar
[11]
V. V. S., A. Bhat K., S. Shetty, G. N. V., R. Sequeira, Design of Heat Exchanger for Exhaust Gas Recovery, J. Mech. Eng. Autom., Vol. 6(5A), p.131–137, 2016.
Google Scholar
[12]
B. C. M. Castillo, K. D. Llanes, M. M. Los Banos, H. G. D., Waste Heat Recovery with Thermoelectric Devices in Cars, Mapua Institute of Technology, 2012.
Google Scholar
[13]
G. Latz, Waste Heat Recovery from Combustion Engines using Rankine Cycle, Chalmers Univ. of Technology, 2016.
Google Scholar
[14]
M. Schmidt, Energy Saving in Industry, Saarland Univ. of Applied Sciences, 2007.
Google Scholar
[15]
A. Legros, G. Ludovic, V. Lemort, Impact of WHR Tech on Car Fuel Consumption, Energies, Vol. 7(8), p.5273–5290, 2014.
DOI: 10.3390/en7106823
Google Scholar
[16]
S. L. Nadaf, P. B. Gangavati, Review on Waste Heat Recovery from Diesel Engines, Govt. Eng. College Haveri, E-ISSN 0976-3945.
Google Scholar
[17]
R. Rattan and M. Kumar, Biodiesel (a Renewable Alternative Fuel) Production from Mustard Oil and Its Performance on Domestic Small Diesel Engines, Int. Referred Res. J., vol. 3, no. 29, pp.45-51, 2012.
Google Scholar
[18]
A. Shazad, M. Tufail, and M. Uzair, Trends in research on latent heat storage using PCM, a bibliometric analysis, Trans. Can. Soc. Mech. Eng., vol. 48, no. 1, pp.1-14, 2023.
DOI: 10.1139/tcsme-2023-0093
Google Scholar
[19]
R. Raghu and G. Ramadoss, Optimization of Injection Timing and Injection Pressure of a DI Diesel Engine Fuelled with Preheated Rice Bran Oil, Int. J. Eng. Environ. Eng., vol. 2, no. 4, pp.661-670, 2011.
Google Scholar
[20]
T. A. Hoang and V. V. Le, The Performance of a Diesel Engine Fueled with Diesel Oil, Biodiesel, and Preheated Coconut Oil, Int. J. Renew. Energy Dev., vol. 6, no. 1, p.1, 2017.
DOI: 10.14710/ijred.6.1.1-7
Google Scholar
[21]
A. K. Madhav, et al., Thermoelectrical Energy Recovery from the Exhaust of a Light Truck, in Proc. 2003 Diesel Engine Emiss. Reduct. Conf., Newport, R.I., USA, 2003.
Google Scholar