Impact of Nano-Silica Addition on Concrete Durability

Article Preview

Abstract:

Concrete deterioration is a major concern for structural engineers, as it can weaken and damage structures, posing safety risks. One of the most effective ways to protect concrete from deterioration is to modify it with pozzolanic materials. Pozzolanic can react with calcium hydroxide (Ca (OH)2) in concrete to form strong, durable cementitious compounds. So this research aims at enhancing the durability of concrete structures against aggressive media attacks. Nanosilica (NS) was used in concrete mix design with different addition percentages of 0, 1, 1.5, 2, and 2.5 by cement weight. The durability of hardened concrete specimens was investigated as follows: measuring water absorption and contact angle; and determining chloride permeability by ion exchange chromatography. Also, the resistivity of concrete against both 3% sulfuric acid and 5% sodium chloride solutions was estimated. Finally, the electrochemical impedance spectroscopy (EIS) was used to determine corrosion resistance of the reinforced concrete. The experimental results detected that NS has a significant mechanism for improving concrete performance as follows: water absorption of concrete modified with 2% NS (M4) decreased by 41% as compared to the control sample, and contact angle increased by 66%. Meanwhile, the chloride permeability decreased by 24%. Moreover, NS is mainly responsible for enhancing concrete durability against aggressive media attacks up to 2% by cement weight. As compared to the control concrete specimen, the durability of the M4 specimen increased by 39% against sulphate attack and by 42% against chloride attack. The study provided a good solution for the problem of concrete building deterioration, especially when it is exposed to aggressive environments. Key words: Concrete durability, pozzolanic materials, nanosilica.

You might also be interested in these eBooks

Info:

Pages:

89-104

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.M. Elnaggara, T.M. Elsokkary, M.A. Shohide, B.A. El-Sabbagh, Impact of nanosized silica on the physic-mechanical properties and corrosion protection of concrete, Al Azhar B. of Sci. 30 (1) (2019) 55-66.

DOI: 10.21608/absb.2019.67893

Google Scholar

[2] G. Kulandaivel, P. Shanmugam, Influence of Nano Silica on Fresh and Hardened Properties of Cement-based Materials – A Review, Silicon 14 (2022) 8327-8357.

DOI: 10.1007/s12633-021-01598-z

Google Scholar

[3] J. Chang, X. Su, W. Yuyou, Z. Zheng, B. Yang , Y. Luo , J. Yang and J. Yang, Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete, Nanotech. Rev. 10 (2021) 1395–1409.

DOI: 10.1515/ntrev-2021-0097

Google Scholar

[4] H. Tran, Vu T. Phan, The effects of Nano SiO2 and Silica Fume on the properties of concrete. Archi. of Civ. Engin. 68 (2022) 391-407.

Google Scholar

[5] L. Li, J. Zheng, P. Ng, A. Kwan, Synergistic cementing efficiencies of nano-silica and micro-silica in carbonation resistance and sorptivity of concrete, J Build. Eng. 33 (2021) 101862.

DOI: 10.1016/j.jobe.2020.101862

Google Scholar

[6] F. Lavergne, R. Belhadi, J. Carriat, A. Ben Fraj, Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste, Cem. Concr. Compos. 95 (2019) 42–55.

DOI: 10.1016/j.cemconcomp.2018.10.007

Google Scholar

[7] L. Carneiro, M. Houmard, V. Rocha, P. Ludvig, The Effect of Nanosilica Incorporation on the Properties of Cement-Based Materials with and Without other Supplementary Admixtures – A Literature Review, The Open Constr. and Build. Technol. Jour. 16 (2022) 1-19.

DOI: 10.2174/18748368-v16-e2207290

Google Scholar

[8] K. Kaffayatullah,  W. Ahmad, M. Amin, S. Nazar, Nano-Silica-Modified Concrete: A Bibliographic Analysis and Comprehensive Review of Material Properties, Nanomat. 12 (2022) 1-29.

DOI: 10.3390/nano12121989

Google Scholar

[9] V. V. Kumar, and D. Subhashish, Study on strength and durability characterstics of nano-silica based blended concrete, Hybr. Adv. 2 (2023) 1-15.

Google Scholar

[10] Z. Chenglong and Y. Ch, The effect of nano-SiO2 on concrete properties: A review, Nanotechnol Rev. 8(2019) 562-572.

Google Scholar

[11] P. Jaishankar, K. T. Poovizhi and K. Mohan, Strength and Durability Behaviour of Nano Silica on High Performance Concrete, Inter. Jour. of Engin. & Technol. 7(2018):415-418.

DOI: 10.14419/ijet.v7i3.12.16118

Google Scholar

[12] A. Kumar, G. Singh, Effect of Nano Silica on the Fresh and Hardened Properties of Cement Mortar, Inter. Jour. of Appl. Engin. Res. 13 (2018) 11183-11188.

Google Scholar

[13] A. Reddy, T. Meena, S. priyanka and P. Mounika, The Effect of Nano Silica on Mechanical Properties of Concrete, Jour.l of Appl. Sci. 1( 2019) 36-40.

Google Scholar

[14] C. Qingsheng, Z. Hongyu, Y. Jianjun, T. Gaoliang and N. Sanjay, Corrosion Resistance and Compressive Strength of Cemented Soil Mixed with Nano-Silica in Simulated Seawater Environment, KSCE Jour. of Civ. Eng. 27 (2023) 1535–1550.

DOI: 10.1007/s12205-023-1240-4

Google Scholar

[15] W. Li, Z. Huang, F. Cao, Z. Sun and S. P. Shah, Effects of nano-silica and nano-limestone on flow-ability and mechanical properties of ultrahigh-performance concrete matrix. Const. and Build. Mat. 95 (2015) 366-374.

DOI: 10.1016/j.conbuildmat.2015.05.137

Google Scholar

[16] F. Shaikh, S. Supit and P. Sarker, study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes, Mat. & Des. 60 (2014) 433-442.

DOI: 10.1016/j.matdes.2014.04.025

Google Scholar

[17] S. Shah, P. Hou and M. S. Konsta-Gdoutos, Nanomodification of cementitious material: toward a strongerand durable concrete. Jour. of Sust. Cement-Based Mat. 5 (2016) 1-22.

DOI: 10.1080/21650373.2015.1086286

Google Scholar

[18] A.Ghosh, V. Sairam and B. Bhattacharjee, Effect of nano-silica on strength and microstructure of cement silica fume paste, mortar and concrete, Ind. Concr. Jour. 87 (2013) 11-25.

Google Scholar

[19] R. Yu, P. Spiesz and H. Brouwers, Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount, Con. and Build. Mat. 65 (2014) 140-150.

DOI: 10.1016/j.conbuildmat.2014.04.063

Google Scholar

[20] H. Eskandari-Naddaf and A. Ziaei-Nia, Simultaneous effect of nano and micro silica on corrosion behaviour of reinforcement in concrete containing cement strength grade of C-525, Proc. Manufact. 22 (2018) 399-405.

DOI: 10.1016/j.promfg.2018.03.062

Google Scholar

[21] A. Sharkawi, M. Abd-Elaty and A. Khalifa, Synergistic influence of micro-nano silica mixture on durability performance of cementious materials, Con. and Build. Mat. 164 (2018).

DOI: 10.1016/j.conbuildmat.2018.01.013

Google Scholar

[22] T. Tawfik, M. El-Yamany, S. Abd El-Aleem, A. Gaber and G. AbdEl-Hafez, Effect of nanosilica and nanomaterial waste on durability and corrosion rate of steel reinforcement embedded in high-performance concrete, Asi. Jour. of Civ. Eng. 20 (2019) 147-135.

DOI: 10.1007/s42107-018-0093-5

Google Scholar

[23] K. Abu el-Hassan, Y. Hakeem, M. Amin, B. A. Tayeh, A. M. Zeyad, I. S. Agwa, Y. Elsakhawy, Effects of nano titanium and nano silica on high-strength concrete properties incorporating heavyweight aggregate, Struct. Conc. 25 (2023) 239-264.

DOI: 10.1002/suco.202300232

Google Scholar

[24] M. Amin, A. A. Hakamy, A. M. Zeyad, B. A. Tayeh and I. S. Agwa, Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray, Struct. Eng. and Mech. 85 (2023) 29-53.

Google Scholar

[25] I.Y. Hakeem , M. Alharthai, M. Amin, A. M. Zeyad, B. A. Tayeh , I. S. Agwa , Properties of sustainable high-strength concrete containing large quantities of industrial wastes, nanosilica and recycled aggregates, Jour. of Mat. Res. and Technol. 24 (2023) 7444-7461.

DOI: 10.1016/j.jmrt.2023.05.050

Google Scholar

[26] A.A. Ghanim, M. Amin, A.M. Zeyad, B.A. Tayeh, I.S. Agwa, Effect of modified nano-titanium and fly ash on ultra-high-performance concrete properties, Struct. Con. 24 (2023) 6815-6832.

DOI: 10.1002/suco.202300053

Google Scholar

[27] I.Y. Hakeem, M. Amin, I.S. Agwa, M.H. Abd-Elrahman, O. Ibrahim, M. Samy, Ultra-high-performance concrete properties containing rice straw ash and nano eggshell powder, Case Stud. in Const. Mat. 19 (2023) e02291.

DOI: 10.1016/j.cscm.2023.e02291

Google Scholar

[28] M. A. Shohide, Experimental Investigation on the Physco-Mechanical and Protective Properties of Concrete Incorporating Layered Doubl hydroxide (LDH), Key Eng. Mat. 1003 (2024) 115-.

DOI: 10.4028/p-1v7ake

Google Scholar

[29] M. A. Shohide, Fabrication and application of an innovative low cost-efficient polymer nano-composite as concrete protective coating, Inter. Jour. of Adhes. and Adhesiv. 128 (2024), 103542.

DOI: 10.1016/j.ijadhadh.2023.103542

Google Scholar

[30] M. A. Shohide, Enhancing concrete performance using protective coating fabricated by recycled waste material, Jour. of Adhes. Sci. and Technol. 38 (2024) 1629 – 1643.

DOI: 10.1080/01694243.2023.2269660

Google Scholar

[31] K. Younis, and S. Mustafa, Feasibility of using nanoparticles of SiO2 to improve the performance of recycled aggregate concrete, Adv. in Mat. Sci. and Eng. 2018 (2018) 1-11.

Google Scholar

[32] B. Shuai , Y. Lingbo , G. Xinchun, L. Hui , O. Jinping,  Study on the long-term chloride permeability of nano-silica modified cement pastes cured at negative temperature, Jour. of Build. Eng. 57 (2022) 104854.

DOI: 10.1016/j.jobe.2022.104854

Google Scholar

[33] M.A. Shohide and M.A. Ahmed, Influence of Silica Nanoparticles on the Properties of Nanocomposite Based on Epoxy as Concrete Protective Coating, Mat. Sci. For. 1089 (2023) 153-163.

DOI: 10.4028/p-p961bu

Google Scholar

[34] N. Nageswari, R. Divahar, S. P. Sangeetha, P. S. Aravind Raj and G. Kesavan, Empirical Predictions for the Mechanical Properties of Nano-Biomass Silica with Chemical and Bio-Admixture Concrete, Silicon. 16 (2024) 2081-2101.

DOI: 10.1007/s12633-023-02817-5

Google Scholar

[35] Z. Peng, S. Dehao, L. Qingfu, Z. Shikun, and L. Yifeng, Effect of Nano Silica Particles on Impact Resistance and Durability of Concrete Containing Coal Fly Ash, Nanomaterials (Basel). 5 (2021): 1296.

DOI: 10.3390/nano11051296

Google Scholar

[36] Eštoková A., Analyzing the Relationship between Chemical and Biological-Based Degradation of Concrete with Sulfate-Resisting Cement, Jour. of Env. Stu. 28 (2019) 2121-2129.

DOI: 10.15244/pjoes/91079

Google Scholar

[37] E.M. Elnaggar, T.M. Elsokkary, M.A. Shohide, B.A. El-Sabbagh, H.A. Abdel-Gawwad, Surface protection of concrete by new protective coating, Con. and Build. Mat. 20: (2019) 245-252.

DOI: 10.1016/j.conbuildmat.2019.06.026

Google Scholar

[38] T.A. Aiken, L. Gu , J. Kwasny, G.F. Huseien, D. McPolin, W. Sha, Acid resistance of alkali-activated binders: A review of performance, mechanisms of deterioration and testing procedures, Con. and Build. Mat. 342: (2022) 128057.

DOI: 10.1016/j.conbuildmat.2022.128057

Google Scholar

[39] K. Olonade, and A. Olajumoke, Effects of sulphuric acid on the compressive strength of blended cementcassava peel ash concrete, Con. Mat. and Struct. 204 (2014) 764 -771.

DOI: 10.3233/978-1-61499-466-4-764

Google Scholar

[40] H.S. Khalila, A.F. Megahed, S.S.E. Ahmad and A.H. Atia, Performance of High Strength Concrete Utilizing Silica Fume, Nano-Silica and Steel Fibers with Different Cementitious Contents, The Egyptian Int. Jour. of Eng Sci. and Technol. 45 (2024) 55–62.

DOI: 10.21608/eijest.2023.218548.1237

Google Scholar

[41] H. Bahadori and P. Hosseini, Reduction of cement consumption by the acid of ailicanano-particles (investigation on concrete properties), Jou. of Civ. Eng. and manag.18(2012)416-425.

DOI: 10.3846/13923730.2012.698912

Google Scholar

[42] N. Setiati Effects of additional nanosilica of compressive strength on mortar, Innov. in Pol. Sci. and Technol. 223 (2016) 550-561.

Google Scholar

[43] J. Ma, Q. Yang, X. Wang, X. Peng and F. Qin, Review of Prediction Models for Chloride Ion Concentration in Concrete Structures, Buildings Jour. 15(2025) 693.

DOI: 10.3390/buildings15010149

Google Scholar

[44] S.A. Mostafa, M. M. EL-Deeb, A. A. Farghali and A. S. Faried, Evaluation of the nano silica and nano waste materials on the corrosion protection of high strength steel embedded in ultra-high performance concrete, Sci. Rep. 11 (2021) 2617.

DOI: 10.1038/s41598-021-82322-0

Google Scholar