Effect of Minor Alloying on the Microstructure, Superplastic Behavior and Tensile Properties of Ti-Al-V-Mo Alloy

Article Preview

Abstract:

The effects of minor additions of alloying elements Fe/Ni/Co (0.5wt.%), B (0.01–0.1wt.%), and Y (0.2wt.%) on the superplastic behavior, microstructural evolution and mechanical properties of Ti-4 wt.%Al-3wt.%Mo-1wt.%V alloys are investigated. By increasing the high-angle grain boundary fraction and related facilitation of the grain boundary sliding, these elements reduce the flow stress values at the initial deformation stage and improve flow stability at a steady state. The most pronounced effect is found at low deformation temperatures when acceleration of recrystallization and globularization of the microstructure is critical. As a result, minor additions of the studied elements provide good superplasticity at relatively low temperatures of 625–775 °C (m≈0.50 and elongation to failure ≈ 500–1000%) and post-forming room-temperature strength (YS≈830 MPa and UTS≈990 MPa).

You might also be interested in these eBooks

Info:

Pages:

23-32

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Barnes, Superplastic Forming 40 Years and Still Growing, J. Mater. Eng. Perform. 16 (2007) 440–454.

DOI: 10.1007/s11665-007-9076-5

Google Scholar

[2] E. Alabort, D. Putman, R.C. Reed, Superplasticity in Ti-6Al-4V: Characterisation, modelling and applications, Acta Mater. (2015).

DOI: 10.1016/j.actamat.2015.04.056

Google Scholar

[3] M. Motyka, J. Sieniawski, W. Ziaja, Microstructural aspects of superplasticity in Ti-6Al-4V alloy, Mater. Sci. Eng. A (2014).

DOI: 10.1016/j.msea.2014.01.067

Google Scholar

[4] A.O. Mosleh, A.D. Kotov, V. Vidal, A.G. Mochugovskiy, V. Velay, V. Mikhaylovskaya, Initial microstructure influence on Ti – Al – Mo – V alloy ' s superplastic deformation behavior and deformation mechanisms, Mater. Sci. Eng. A 802 (2021) 140626.

DOI: 10.1016/j.msea.2020.140626

Google Scholar

[5] A.D. Kotov, A. V. Mikhailovskaya, A.O. Mosleh, T.P. Pourcelot, A.S. Prosviryakov, V.K. Portnoi, Superplasticity of an Ultrafine-Grained Ti–4% Al–1% V–3% Mo Alloy, Phys. Met. Metallogr. 120 (2019) 60–68.

DOI: 10.1134/S0031918X18100083

Google Scholar

[6] M. Peters, C. Leyens, Fabrication of Titanium Alloys, in: C. Leyens, M. Peters (Eds.), Titan. Titan. Alloy., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, FRG, 2005: p.245–261.

DOI: 10.1002/3527602119.ch8

Google Scholar

[7] M.L. Meier, D.R. Lesuer, A.K. Mukherjee, α Grain size and β volume fraction aspects of the superplasticity of Ti-6Al-4V, Mater. Sci. Eng. A 136 (1991) 71–78.

DOI: 10.1016/0921-5093(91)90442-P

Google Scholar

[8] J. Sieniawski, M. Motyka, Superplasticity in titanium alloys, Jounal Achiev. Mater. Manuf. Eng. (2007).

Google Scholar

[9] T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998–6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[10] S.V. Zherebtsov, E.A. Kudryavtsev, G.A. Salishchev, B.B. Straumal, S.L. Semiatin, Microstructure evolution and mechanical behavior of ultrafine Ti 6Al 4V during low-temperature superplastic deformation, Acta Mater. 121 (2016) 152–163.

DOI: 10.1016/j.actamat.2016.09.003

Google Scholar

[11] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation, Scr. Mater. 43 (2000) 819–824.

DOI: 10.1016/S1359-6462(00)00496-6

Google Scholar

[12] I. Ratochka, O. Lykova, I. Mishin, E. Naydenkin, Superplastic deformation behavior of Ti-4Al-2V alloy governed by its structure and precipitation phase evolution, Mater. Sci. Eng. A 731 (2018) 577–582.

DOI: 10.1016/j.msea.2018.06.094

Google Scholar

[13] R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Prog. Mater. Sci. 137 (2023) 101131.

DOI: 10.1016/j.pmatsci.2023.101131

Google Scholar

[14] R.S. Mishra, V. V. Stolyarov, C. Echer, R.Z. Valiev, A.K. Mukherjee, Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti-6Al-4V alloy, Mater. Sci. Eng. A 298 (2001) 44–50.

DOI: 10.1016/s0921-5093(00)01338-1

Google Scholar

[15] T. Zhang, Y. Liu, D.G. Sanders, B. Liu, W. Zhang, C. Zhou, Development of fine-grain size titanium 6Al-4V alloy sheet material for low temperature superplastic forming, Mater. Sci. Eng. A 608 (2014) 265–272.

DOI: 10.1016/j.msea.2014.04.098

Google Scholar

[16] E. Alabort, D. Barba, M.R. Shagiev, M.A. Murzinova, R.M. Galeyev, O.R. Valiakhmetov, A.F. Aletdinov, R.C. Reed, Alloys-by-design: Application to titanium alloys for optimal superplasticity, Acta Mater. 178 (2019) 275–287.

DOI: 10.1016/j.actamat.2019.07.026

Google Scholar

[17] H. Imai, G. Yamane, H. Matsumoto, V. Vidal, V. Velay, Superplasticity of metastable ultrafine-grained Ti-6242S alloy: Mechanical flow behavior and microstructural evolution, Mater. Sci. Eng. A 754 (2019) 569–580.

DOI: 10.1016/j.msea.2019.03.085

Google Scholar

[18] A. V. Mikhaylovskaya, A.O. Mosleh, P. Mestre-Rinn, A.D. Kotov, M.N. Sitkina, A.I. Bazlov, D. V. Louzguine-Luzgin, High-Strength Titanium-Based Alloy for Low-Temperature Superplastic Forming, Metall. Mater. Trans. A 52 (2021) 293–302.

DOI: 10.1007/s11661-020-06058-8

Google Scholar

[19] S. Roy, S. Suwas, Enhanced superplasticity for (α+β)-hot rolled Ti–6Al–4V–0.1B alloy by means of dynamic globularization, Mater. Des. 58 (2014) 52–64.

DOI: 10.1016/j.matdes.2014.01.033

Google Scholar

[20] B. Poorganji, S. Hotta, T. Murakami, T. Narushima, Y. Iguchi, C. Ouchi, The Effect of Small Amounts of Yttrium Addition on Static and under Superplastic Deformation Grain Growth in Newly Developed α+β Type, Ti-4.5Al-6Nb-2Mo-2Fe Alloy, Adv. Mater. Res. 15–17 (2006) 970–975.

DOI: 10.4028/www.scientific.net/AMR.15-17.970

Google Scholar

[21] M.L.L. Meier, D.R.R. Lesuer, A.K.K. Mukherjee, The effects of the α/β phase proportion on the superplasticity of Ti-6Al-4V and iron-modified Ti-6Al-4V, Mater. Sci. Eng. A 154 (1992) 165–173.

DOI: 10.1016/0921-5093(92)90342-X

Google Scholar

[22] A.D. Kotov, M.N. Postnikova, A.O. Mosleh, A. V. Mikhaylovskaya, Influence of Fe on the microstructure, superplasticity and room-temperature mechanical properties of Ti–4Al–3Mo–1V-0.1B alloy, Mater. Sci. Eng. A 845 (2022) 143245.

DOI: 10.1016/j.msea.2022.143245

Google Scholar

[23] Y. Mi, Y. Lu, D. Wang, Y. Zhao, Y. Dong, H. Chang, I. V. Alexandrov, A Study of the Superplastic Deformation Behavior of Low-Cost Ti-2Fe-0.1B Alloys, Materials (Basel). 17 (2024) 1282.

DOI: 10.3390/ma17061282

Google Scholar

[24] A.D. Kotov, M.N. Postnikova, A.O. Mosleh, A.V. Mikhaylovskaya, Effect of Co addition on the microstructure evolution and superplastic behavior of Ti-4Al-3Mo-1V-0.1B alloy, Mater. Res. Proc. 32 (2023) 181–188.

DOI: 10.21741/9781644902615-20

Google Scholar

[25] J.S. Kim, D.M. Li, C.S. Lee, Alloying effects on superplastic behaviour of Ti-Fe-Al-Ni alloys, Mater. Sci. Technol. 14 (1998) 676–682.

DOI: 10.1179/mst.1998.14.7.676

Google Scholar

[26] J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, K. Maruyama, Stress-induced phase transformation during superplastic deformation in two-phase Ti–Al–Fe alloy, Acta Mater. 48 (2000) 2059–2069.

DOI: 10.1016/S1359-6454(00)00049-5

Google Scholar

[27] M.N. Postnikova, A.D. Kotov, A.O. Mosleh, V. V. Cheverikin, A. V. Mikhaylovskaya, The influence of rapid-diffusive β-stabilizers on the microstructure formation and superplasticity of titanium-based alloys, J. Alloys Compd. 1002 (2024) 175065.

DOI: 10.1016/j.jallcom.2024.175065

Google Scholar

[28] A.D. Kotov, M.N. Postnikova, A.O. Mosleh, V. V. Cheverikin, A. V. Mikhaylovskaya, Microstructure and Superplastic Behavior of Ni-Modified Ti-Al-Mo-V Alloys, Metals (Basel). 12 (2022) 741.

DOI: 10.3390/met12050741

Google Scholar

[29] B. Wei, B. Tang, X. Chen, Q. Xu, S. Zhang, H. Kou, J. Li, Precipitation behavior of orthorhombic phase in ti-22al-25nb alloy during slow cooling aging treatment and its effect on tensile properties, Metals (Basel). 10 (2020) 1–11.

DOI: 10.3390/met10111515

Google Scholar

[30] T. Zhang, H. Huang, S.R.E. Hosseini, W. Chen, F. Li, C. Chen, K. Zhou, Obtaining heterogeneous α laths in selective laser melted Ti–5Al–5Mo–5V–1Cr–1Fe alloy with high strength and ductility, Mater. Sci. Eng. A 835 (2022) 142624.

DOI: 10.1016/j.msea.2022.142624

Google Scholar

[31] V.M. Imayev, R.A. Gaisin, R.M. Imayev, Effect of boron addition on formation of a fine-grained microstructure in commercially pure titanium processed by hot compression, Mater. Sci. Eng. A 639 (2015) 691–698.

DOI: 10.1016/j.msea.2015.05.082

Google Scholar

[32] R.A. Gaisin, V.M. Imayev, R.M. Imayev, E.R. Gaisina, Effect of boron addition on recrystallization behavior of commercially pure titanium subjected to hot compression, Lett. Mater. 5 (2015) 124–128.

DOI: 10.22226/2410-3535-2015-2-124-128

Google Scholar

[33] A.I. Khorev, Alloying titanium alloys with rare-earth metals, Russ. Eng. Res. 31 (2011) 1087–1094.

DOI: 10.3103/S1068798X11110104

Google Scholar

[34] D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, A. Prasad, D.H. StJohn, M.A. Easton, Refining prior-β grains of Ti–6Al–4V alloy through yttrium addition, J. Alloys Compd. 841 (2020) 1–7.

DOI: 10.1016/j.jallcom.2020.155733

Google Scholar

[35] Y. Chong, R. Gholizadeh, K. Yamamoto, N. Tsuji, New insights into the colony refinement mechanism by solute boron atoms in Ti-6Al-4V alloy, Scr. Mater. 230 (2023) 115397.

DOI: 10.1016/j.scriptamat.2023.115397

Google Scholar

[36] M.J. Bermingham, S.D. McDonald, K. Nogita, D.H. St. John, M.S. Dargusch, Effects of boron on microstructure in cast titanium alloys, Scr. Mater. 59 (2008) 538–541.

DOI: 10.1016/j.scriptamat.2008.05.002

Google Scholar

[37] G. Singh, U. Ramamurty, Boron modified titanium alloys, Prog. Mater. Sci. 111 (2020) 100653.

DOI: 10.1016/j.pmatsci.2020.100653

Google Scholar

[38] R. Chen, C. Tan, X. Yu, S. Hui, W. Ye, Y. Lee, Effect of TiB particles on the beta recrystallization behavior of the Ti-2Al-9.2Mo-2Fe-0.1B metastable beta titanium alloy, Mater. Charact. 153 (2019) 24–33.

DOI: 10.1016/j.matchar.2019.04.023

Google Scholar

[39] D. Hill, R. Banerjee, D. Huber, J. Tiley, H.L. Fraser, Formation of equiaxed alpha in TiB reinforced Ti alloy composites, Scr. Mater. 52 (2005) 387–392.

DOI: 10.1016/j.scriptamat.2004.10.019

Google Scholar

[40] J. Humphreys, G.S. Rohrer, A. Rollett, Recrystallization of Two-Phase Alloys, in: Recryst. Relat. Annealing Phenom., Elsevier, 2017: p.321–359.

DOI: 10.1016/B978-0-08-098235-9.00009-4

Google Scholar

[41] A.Y. Tishina, A.D. Kotov, M.N. Postnikova, A. V. Mikhaylovskaya, Effect of yttrium and erbium on the microstructure and superplasticity of Ti–4Al–3Mo–1V alloy, Metallurgist (2025).

DOI: 10.1007/s11015-025-01890-y

Google Scholar

[42] V. Anil Kumar, S.V.S.N. Murty, R.K. Gupta, A.G. Rao, M.J.N.V. Prasad, Effect of boron on microstructure evolution and hot tensile deformation behavior of Ti-5Al-5V-5Mo-1Cr-1Fe alloy, J. Alloys Compd. 831 (2020) 154672.

DOI: 10.1016/j.jallcom.2020.154672

Google Scholar

[43] E. Alabort, D. Barba, R. Reed, Mechanisms of Superplasticity in Titanium Alloys: Measurement, In Situ Observations and Rationalization, Defect Diffus. Forum 385 (2018) 65–71.

DOI: 10.4028/www.scientific.net/DDF.385.65

Google Scholar