[1]
M. Peters, C. Leyens, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinkeim, 2003.
DOI: 10.1002/3527602119.ch8
Google Scholar
[2]
V.N. Moiseyev, Titanium Alloys. Russian Aircraft and Aerospace Applications, CRC Press., New York, 2005.
DOI: 10.1201/9781420037678
Google Scholar
[3]
G. Lütjering, JC. Williams, Titanium. Engineering materials and processes, Springer, Berlin, 2007, pp.1-39.
Google Scholar
[4]
A.P. Mouritz, Introduction to Aerospace Materials, Woodhead, Publishing in Materials, 2012.
Google Scholar
[5]
O.A. Kaibyshev, F.Z. Utyashev, Superplasticity, structure refinement and treatment of hard-deformed alloys, Science, Moscow, 2002 (In Russian).
Google Scholar
[6]
T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997.
Google Scholar
[7]
A.O. Mosleh, A.D. Kotov, A.G. Mochugovskiy, A.V. Mikhaylovskaya, V. Vidal, V. Velay, Initial microstructure influence on Ti–Al–Mo–V alloy's superplastic deformation behavior and deformation mechanisms, Mat. Sci. Eng. A. 802 (2021) 140626.
DOI: 10.1016/j.msea.2020.140626
Google Scholar
[8]
R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk nanostructured materials: fundamentals and applications, Wiley, New Jersey, 2013.
DOI: 10.1002/9781118742679
Google Scholar
[9]
R.Y. Lutfullin, A.A. Kruglov, M.K. Mukhametrakhimov, O.A. Rudenko, Low temperature superplasticity and production of hollow structures out of VT6 titanium alloy, Lett. Mater. 5(2) (2015) 185-188.
DOI: 10.22226/2410-3535-2015-2-185-188
Google Scholar
[10]
S.V. Zherebtsov, E.A. Kudryavtsev, G.A. Salishchev, B.B. Straumal, S.L. Semiatin Microstructure evolution and mechanical behavior of ultrafine Ti-6Al-4V during low temperature superplastic deformation, Acta Mat. 121 (2016) 152-163.
DOI: 10.1016/j.actamat.2016.09.003
Google Scholar
[11]
E.V. Naydenkin, I.V. Ratochka , I.P. Mishin, O.N. Lykova, N.V. Varlamova, The effect of interfaces on mechanical and superplastic properties of titanium alloys, J. Mat. Sc. 52–8 (2017) 4164-4171.
DOI: 10.1007/s10853-016-0508-1
Google Scholar
[12]
E.Y. Klassman, V.V. Astanin, Low-temperature superplasticity of titanium alloy VT22, Letters on Materials. 10 (1) (2020) 10-15.
DOI: 10.22226/2410-3535-2020-1-10-15
Google Scholar
[13]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Progress in materials science. 51 (2006) 427–556.
DOI: 10.1016/j.pmatsci.2005.08.003
Google Scholar
[14]
Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, A.P. Zhilyaev, E.F. Dudarev, K.V. Ivanov, M.B. Ivanov, O.A. Kashin, E.V. Naydenkin, Grain boundary diffusion and properties of nanostructured materials, Cambridge Int Sci Publ., 2007.
DOI: 10.1016/s1359-6462(00)00699-0
Google Scholar
[15]
A.P. Zhilyaev, A.I. Pshenichnyuk, Superplasticity and grain boundaries in ultrafine-grained materials, Woodhead Publishing Ltd., 2011.
DOI: 10.1533/9780857093837
Google Scholar
[16]
E.V. Naydenkin, I.V. Ratochka, G.P. Grabovetskaya, The aspects of practical application of ultrafine-grained titanium alloys produced by severe plastic deformation, Materials Science Forum. 667–669 (2011) 1183–1187.
DOI: 10.4028/www.scientific.net/MSF.667-669.1183
Google Scholar
[17]
I.A. Ovid'ko, R.Z. Valiev, Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Progress in materials science. 94 (2018) 462-540.
DOI: 10.1016/J.PMATSCI.2018.02.002
Google Scholar
[18]
A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Superplastic behavior of ultrafine-grained Ti–6Al–4V alloy, Mater Sci Eng A. 323 (2002) 318–325.
DOI: 10.1016/S0921-5093(01)01384-3
Google Scholar
[19]
L. Saitova, I. Semenova, H.W. Höppel, R. Valiev, M. Göken, Enhanced superplastic deformation behavior of ultrafine-grained Ti-6Al-4V alloy, Materualwissenschaft und Werkstofftechnik. 39 (2008) 367-370.
DOI: 10.1002/mawe.200800308
Google Scholar
[20]
H. Matsumoto, K. Yoshida, S-H. Lee, Y. Ono, A. Chiba, Ti–6Al–4V alloy with an ultrafine-grained microstructure exhibiting low-temperature–high-strain-rate superplasticity, Mater. Let. 98 (2013) 209-212.
DOI: 10.1016/j.matlet.2013.02.033
Google Scholar
[21]
I.V. Ratochka, E.V. Naydenkin, I.P. Mishin, O.N. Lykova, O.V. Zabudchenko, Low-temperature superplasticity of ultrafine-grained near β titanium alloy, Journal of Alloys and Compounds, 891 (2022) 161981.
DOI: 10.1016/j.jallcom.2021.161981
Google Scholar
[22]
I.V. Ratochka, E.V. Naydenkin, I.P. Mishin, O.N. Lykova, Influence of low-temperature superplastic deformation on the structural-phase state and mechanical properties of the ultrafine-grained VT22 alloy, Russian Physics Journal, 66(4) (2023) 385-390.
DOI: 10.1007/s11182-023-02951-y
Google Scholar
[23]
I.V. Ratochka, I.P. Mishin, O.N. Lykova, E.V. Naydenkin, Effect of annealing on the superplastic properties of ultrafine-grained Ti–5Al–5V–5Mo–1Cr–1Fe alloy, Mater. Sci. Eng. A. 803 (2021) 140511.
DOI: 10.1016/j.msea.2020.140511
Google Scholar
[24]
I.V. Ratochka, O.N. Lykova, E.V. Naidenkin, Influence of low-temperature annealing time on the evolution of the structure and mechanical properties of a titanium Ti-Al-V, Physics of Metals and Metallography. 116(3) (2015) 302-308.
DOI: 10.1134/S0031918X15030114
Google Scholar
[25]
E.V. Naydenkin, I.V. Ratochka, O.N. Lykova, I.P. Mishin, Evolution of the structural phase state, deformation behavior, and fracture of ultrafine-grained near-beta titanium alloy after annealing, Journal of Materials Science. 55 (22) (2020) 9237-9244.
DOI: 10.1007/s10853-020-04468-y
Google Scholar