The Effect of Processing under Low-Temperature Superplasticity on Structure and Mechanical Properties of Ultrafine-Grained near Beta Titanium Alloy

Article Preview

Abstract:

The influence of low-temperature superplastic deformation on the structure and room temperature mechanical properties of ultrafine-grained titanium alloy Ti-55511 was investigated. It was shown that superplastic deformation by compression of the alloy at a strain rate of ~10-2 s-1 at a temperature of 823 K (0.42 Tm) leads to an insignificant growth in the elements of the UFG grain-subgrain structure with a slight decrease in the strength value compared to the initial state formed by the all-round pressing method. Additional annealing of samples at a temperature of 723 K for 5 hours after SP compression leads to an increase in mechanical properties to the level of the initial UFG alloy. It was found that preservation of high mechanical (strength) properties of the UFG Ti-55511 alloy after compression deformation can also be ensured by reducing the temperature of the superplastic deformation treatment up to 803 K.

You might also be interested in these eBooks

Info:

Pages:

3-9

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Peters, C. Leyens, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinkeim, 2003.

DOI: 10.1002/3527602119.ch8

Google Scholar

[2] V.N. Moiseyev, Titanium Alloys. Russian Aircraft and Aerospace Applications, CRC Press., New York, 2005.

DOI: 10.1201/9781420037678

Google Scholar

[3] G. Lütjering, JC. Williams, Titanium. Engineering materials and processes, Springer, Berlin, 2007, pp.1-39.

Google Scholar

[4] A.P. Mouritz, Introduction to Aerospace Materials, Woodhead, Publishing in Materials, 2012.

Google Scholar

[5] O.A. Kaibyshev, F.Z. Utyashev, Superplasticity, structure refinement and treatment of hard-deformed alloys, Science, Moscow, 2002 (In Russian).

Google Scholar

[6] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997.

Google Scholar

[7] A.O. Mosleh, A.D. Kotov, A.G. Mochugovskiy, A.V. Mikhaylovskaya, V. Vidal, V. Velay, Initial microstructure influence on Ti–Al–Mo–V alloy's superplastic deformation behavior and deformation mechanisms, Mat. Sci. Eng. A. 802 (2021) 140626.

DOI: 10.1016/j.msea.2020.140626

Google Scholar

[8] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk nanostructured materials: fundamentals and applications, Wiley, New Jersey, 2013.

DOI: 10.1002/9781118742679

Google Scholar

[9] R.Y. Lutfullin, A.A. Kruglov, M.K. Mukhametrakhimov, O.A. Rudenko, Low temperature superplasticity and production of hollow structures out of VT6 titanium alloy, Lett. Mater. 5(2) (2015) 185-188.

DOI: 10.22226/2410-3535-2015-2-185-188

Google Scholar

[10] S.V. Zherebtsov, E.A. Kudryavtsev, G.A. Salishchev, B.B. Straumal, S.L. Semiatin Microstructure evolution and mechanical behavior of ultrafine Ti-6Al-4V during low temperature superplastic deformation, Acta Mat. 121 (2016) 152-163.

DOI: 10.1016/j.actamat.2016.09.003

Google Scholar

[11] E.V. Naydenkin, I.V. Ratochka , I.P. Mishin, O.N. Lykova, N.V. Varlamova, The effect of interfaces on mechanical and superplastic properties of titanium alloys, J. Mat. Sc. 52–8 (2017) 4164-4171.

DOI: 10.1007/s10853-016-0508-1

Google Scholar

[12] E.Y. Klassman, V.V. Astanin, Low-temperature superplasticity of titanium alloy VT22, Letters on Materials. 10 (1) (2020) 10-15.

DOI: 10.22226/2410-3535-2020-1-10-15

Google Scholar

[13] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Progress in materials science. 51 (2006) 427–556.

DOI: 10.1016/j.pmatsci.2005.08.003

Google Scholar

[14] Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, A.P. Zhilyaev, E.F. Dudarev, K.V. Ivanov, M.B. Ivanov, O.A. Kashin, E.V. Naydenkin, Grain boundary diffusion and properties of nanostructured materials, Cambridge Int Sci Publ., 2007.

DOI: 10.1016/s1359-6462(00)00699-0

Google Scholar

[15] A.P. Zhilyaev, A.I. Pshenichnyuk, Superplasticity and grain boundaries in ultrafine-grained materials, Woodhead Publishing Ltd., 2011.

DOI: 10.1533/9780857093837

Google Scholar

[16] E.V. Naydenkin, I.V. Ratochka, G.P. Grabovetskaya, The aspects of practical application of ultrafine-grained titanium alloys produced by severe plastic deformation, Materials Science Forum. 667–669 (2011) 1183–1187.

DOI: 10.4028/www.scientific.net/MSF.667-669.1183

Google Scholar

[17] I.A. Ovid'ko, R.Z. Valiev, Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Progress in materials science. 94 (2018) 462-540.

DOI: 10.1016/J.PMATSCI.2018.02.002

Google Scholar

[18] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Superplastic behavior of ultrafine-grained Ti–6Al–4V alloy, Mater Sci Eng A. 323 (2002) 318–325.

DOI: 10.1016/S0921-5093(01)01384-3

Google Scholar

[19] L. Saitova, I. Semenova, H.W. Höppel, R. Valiev, M. Göken, Enhanced superplastic deformation behavior of ultrafine-grained Ti-6Al-4V alloy, Materualwissenschaft und Werkstofftechnik. 39 (2008) 367-370.

DOI: 10.1002/mawe.200800308

Google Scholar

[20] H. Matsumoto, K. Yoshida, S-H. Lee, Y. Ono, A. Chiba, Ti–6Al–4V alloy with an ultrafine-grained microstructure exhibiting low-temperature–high-strain-rate superplasticity, Mater. Let. 98 (2013) 209-212.

DOI: 10.1016/j.matlet.2013.02.033

Google Scholar

[21] I.V. Ratochka, E.V. Naydenkin, I.P. Mishin, O.N. Lykova, O.V. Zabudchenko, Low-temperature superplasticity of ultrafine-grained near β titanium alloy, Journal of Alloys and Compounds, 891 (2022) 161981.

DOI: 10.1016/j.jallcom.2021.161981

Google Scholar

[22] I.V. Ratochka, E.V. Naydenkin, I.P. Mishin, O.N. Lykova, Influence of low-temperature superplastic deformation on the structural-phase state and mechanical properties of the ultrafine-grained VT22 alloy, Russian Physics Journal, 66(4) (2023) 385-390.

DOI: 10.1007/s11182-023-02951-y

Google Scholar

[23] I.V. Ratochka, I.P. Mishin, O.N. Lykova, E.V. Naydenkin, Effect of annealing on the superplastic properties of ultrafine-grained Ti–5Al–5V–5Mo–1Cr–1Fe alloy, Mater. Sci. Eng. A. 803 (2021) 140511.

DOI: 10.1016/j.msea.2020.140511

Google Scholar

[24] I.V. Ratochka, O.N. Lykova, E.V. Naidenkin, Influence of low-temperature annealing time on the evolution of the structure and mechanical properties of a titanium Ti-Al-V, Physics of Metals and Metallography. 116(3) (2015) 302-308.

DOI: 10.1134/S0031918X15030114

Google Scholar

[25] E.V. Naydenkin, I.V. Ratochka, O.N. Lykova, I.P. Mishin, Evolution of the structural phase state, deformation behavior, and fracture of ultrafine-grained near-beta titanium alloy after annealing, Journal of Materials Science. 55 (22) (2020) 9237-9244.

DOI: 10.1007/s10853-020-04468-y

Google Scholar