[1]
H. Shirakawa, E. J. Louis, et al, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene (CH)X, Journal of the Chemical Society, Chemical Communications, (1977), 16 : 578-580
DOI: 10.1039/c39770000578
Google Scholar
[2]
S. E. Yoon, J. Park, J. E. Kwon, S. Y. Lee, J. M. Han, C. Y. Go, etc., Improvement of Electrical Conductivity in Conjugated Polymers through Cascade Doping with Small Molecular Dopants. Advanced Materials. (2020), 32 (49): 200512910
DOI: 10.1002/adma.202005129
Google Scholar
[3]
M. Eslamian,Inorganic and Organic Solution-Processed Thin Film Devices, Nano Micro Letters. 9 (2017) 1-23.
DOI: 10.1007/s40820-016-0106-4
Google Scholar
[4]
S. Ahamad S, Organic semiconductors for device applications: current trends and future prospects, Journal of Polymer Engineering. 34 (2014) 279- 338.
DOI: 10.1515/polyeng-2013-0267
Google Scholar
[5]
C. W. Lee, O. Y. Kim, J. Y. Lee, Organic materials for organic electronic devices. Journal of Industrial and Engineering Chemistry, (2014), 20: 1198–1208.
DOI: 10.1016/j.jiec.2013.09.036
Google Scholar
[6]
A. K. Chauhan, P. Jha, D. K. Aswal, et al., Organic Devices: Fabrication, Applications, and Challenges, Journal of Electronics Materials, (2022), 51: 447–485
Google Scholar
[7]
S. Chakraborty, N. B. Manik, Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells,Journal of Semiconductors. 35 (2014) 124004(1-6).
DOI: 10.1088/1674-4926/35/12/124004
Google Scholar
[8]
D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, etc, Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells,Journal of Organic Chemistry. 72 (2007) 9550–9556.
DOI: 10.1021/jo701592x
Google Scholar
[9]
P.K. Das, S. Sen, N. B. Manik, "Effect of Single Walled Carbon Nanotubes on the Series Resistance and Trap Energy of Malachite Green Dye Based Organic Device", Journal of Nano Research 69 (2021) 69, 43-52.
DOI: 10.4028/www.scientific.net/jnanor.69.43
Google Scholar
[10]
I. Khan, K. Saeed and I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry, (2019),12(7): 908-931
DOI: 10.1016/j.arabjc.2017.05.011
Google Scholar
[11]
P. K. Das, S. Bhunia,N. B. Manik, Effect of Trap Energy on Series Resistance of Phenosafranine Dye Based Organic Diode in Presence of TiO2 and ZnO Nanoparticles, Advanced Materials Research. 1159(2020) 112 - 123
DOI: 10.4028/www.scientific.net/amr.1159.112
Google Scholar
[12]
R. Li, T. Li and Q. Zhou, Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review, Catalysts (2020), 10(7): 804
DOI: 10.3390/catal10070804
Google Scholar
[13]
S. Sagadevan, etc., Investigation on Optical, Dielectric and Invitro Anti-Inflammatory Responses of Titanium Dioxide (TiO2) Nanoparticles. Digest Journal of Nanomaterials and Biostructures. (2018), 13(3): 641 - 652
Google Scholar
[14]
A. Y. Khan, B. Saha, G. S. Kumar, Phenazinium dyes safranine O and phenosafranine induce self-structure in single stranded polyadenylic acid: Structural and thermodynamic studies, Journal of Photochemistry and Photobiology B: Biology, (2014), 132: 17-26
DOI: 10.1016/j.jphotobiol.2014.01.014
Google Scholar
[15]
A. K. Jana, Solar cells based on dyes, Journal of Photochemistry and Photobiology A: Chemistry, (2000), 132: 1-17
Google Scholar
[16]
Dr. M. Nasr, Dr. C. Eid, Prof. R. Habchi, Prof. Dr. P. Miele, Dr. M. Bechelany, Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications, Chem sus Chem, (2018), 11: 3023-3047
DOI: 10.1002/cssc.201800874
Google Scholar
[17]
S Sen, and N. B. Manik, Study on the Effect of 8 nm Size Multi Walled Carbon Nanotubes (MWCNT) on the Barrier Height of Malachite Green (MG) Dye Based Organic Device', International Journal of Advanced Science and Engineering, (2020), 6: 23-27
DOI: 10.29294/ijase.6.s2.2020.23-27
Google Scholar
[18]
S. K. Cheung, N. W. Cheung, Extraction of Schottky diode parameters from forward current‐voltage characteristics, Applied Physics Letters, (1986), 49: 85-87
DOI: 10.1063/1.97359
Google Scholar
[19]
S. Okur, F. Yakuphanoglu, M. Ozsoz, P. Kara Kadayifcilar, Electrical and interface properties of Au/DNA/n-si organic-on-inorganic structures, Microelectron, (2009), 86: 2305-2311
DOI: 10.1016/j.mee.2009.04.017
Google Scholar
[20]
P. K. Das, N. B. Manik, "Tuning of series resistance by reducing the trap energy of methyl red dye-based organic devices in the presence of ZnO nanoparticles", International Journal of Renewable Energy Technology (2021) 12 (2), 118-129
DOI: 10.1504/ijret.2021.115280
Google Scholar
[21]
F. Yakuphanoglu, Controlling of silicon–insulator–metal junction by organic semiconductor polymer thin film, Synthetic Metals., (2010), 160: 1551-1555
DOI: 10.1016/j.synthmet.2010.05.024
Google Scholar
[22]
H. F. Haneef , A. M. Zeidell and O. D. Jurchescu, Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices, Journal of Materials Chemistry C, (2020), 8(3): 759-787
DOI: 10.1039/c9tc05695e
Google Scholar
[23]
V. Coropceanu, et. al, Charge transport in organic semiconductors, Chemical Reviews, (2007), 107(4) : 926-952
Google Scholar
[24]
N. Sergeeva, Investigation of Trap States in Organic Semiconductors for Organic Solar Cells Applications, Technische Universit at Dresden, (2022)
Google Scholar
[25]
S. A. Moiz, I. A. Khan, W. A. Younis, K. S. Karimov, Space Charge–Limited Current Model for Polymers Provisional chapter Space Charge–Limited Current Model for Polymers, (2016), ISBN: 978-953-51-2691
DOI: 10.5772/63527
Google Scholar
[26]
P. K. Das, S. Sen, N. B. Manik "Study on the series resistance of crystal violet dye-based organic photovoltaic device in presence of single walled carbon nanotubes", Indian Journal of Physics,(2021) 1-9
DOI: 10.1007/s12648-021-02051-y
Google Scholar