[1]
Asidin MA, Suali E, Jusnukin T, Lahin FA, Review on the applications and developments of drag reducing polymer in turbulent pipe flow, Chinese J Chem Eng 2019,;27(8) 1921–32.
DOI: 10.1016/j.cjche.2019.03.003
Google Scholar
[2]
Abdulbari HA, Shabirin A, Abdurrahman HN, Bio-polymers for improving liquid flow in pipelines—A review and future work opportunities, J Ind Eng Chem 2014,;20(4) 1157–70.
DOI: 10.1016/j.jiec.2013.07.050
Google Scholar
[3]
Abdulbari HA, Wang Ming FL, Mahmood WK, Insoluble additives for enhancing a blood-like liquid flow in micro-channels, J Hydrodyn Ser B 2017,;29(1) 144–53.
DOI: 10.1016/s1001-6058(16)60726-6
Google Scholar
[4]
Han WJ, Choi HJ, Role of bio-based polymers on improving turbulent flow characteristics: Materials and application, Polymers (Basel) 2017,;9(6) 209.
DOI: 10.3390/polym9060209
Google Scholar
[5]
Brandfellner L, Muratspahić E, Bismarck A, Müller HW, Quantitative description of polymer drag reduction: Effect of polyacrylamide molecular weight distributions, J Nonnewton Fluid Mech 2024,;325 105185.
DOI: 10.1016/j.jnnfm.2024.105185
Google Scholar
[6]
Hong CH, Zhang K, Choi HJ, Yoon SM, Mechanical degradation of polysaccharide guar gum under turbulent flow, J Ind Eng Chem 2010,;16(2) 178–80.
DOI: 10.1016/j.jiec.2009.09.073
Google Scholar
[7]
Lim ST, Choi HJ, Lee SY, So JS, Chan CK, λ-DNA induced turbulent drag reduction and its characteristics, Macromolecules 2003,;36(14) 5348–54.
DOI: 10.1021/ma025964k
Google Scholar
[8]
Edomwonyı-otu LC, Gimba MM, Nurudeen Y, Abubakar A, Synergistic effect of polymer-polymer mixtures as drag reducing agents on oil-water flows, Eskişehir Tech Univ J Sci Technol A - Appl Sci Eng 2020,;21(1) 114–27.
DOI: 10.18038/estubtda.712003
Google Scholar
[9]
Ling FWM, Abdulbari HA, Kadhum WA, Heng JT, Investigating the flow behavior of dilute aloe vera biopolymer solutions in microchannel, Chem Eng Commun 2020,;208 753–63.
DOI: 10.1080/00986445.2020.1742115
Google Scholar
[10]
Abdulbari HA, Ling FWM, Hibiscus mucilage for enhancing the flow in blood-stream-like microchannel system, Chem Eng Commun 2017,;204(11) 1282–98.
DOI: 10.1080/00986445.2017.1363038
Google Scholar
[11]
Ling FWM, Heidarinik S, Abdulbari HA, Organic additives for the enhancement of laminar flow in a brain-vessels-like microchannel assembly, Chem Eng Technol 2019,;42(9) 1788–96.
DOI: 10.1002/ceat.201800474
Google Scholar
[12]
Mahmood WK, Khadum WA, Eman E, Abdulbari HA, Biopolymer–surfactant complexes as flow enhancers: Characterization and performance evaluation, Appl Rheol 2019,;29(1) 12–20.
DOI: 10.1515/arh-2019-0002
Google Scholar
[13]
Luqman Hasan M, Jantararas J, Mohd Zaki R, Azmi A, Effects of temperature and injection rates on the performance of bio-polymer drag reducing agent, Mater Today Proc 2018,;5(10, Part 2) 21802–9.
DOI: 10.1016/j.matpr.2018.07.035
Google Scholar
[14]
Coelho EC, Barbosa KCO, Soares EJ, Siqueira RN, Freitas JCC, Okra as a drag reducer for high Reynolds numbers water flows, Rheol Acta 2016,;55(11) 983–91.
DOI: 10.1007/s00397-016-0974-z
Google Scholar
[15]
Tahir M, Hincapie R, Be M, Ganzer L, A comprehensive combination of apparent and shear viscoelastic data during polymer flooding for EOR evaluations, World J Eng Technol 2017,;5(4) 585–600.
DOI: 10.4236/wjet.2017.54050
Google Scholar
[16]
Akindoyo EO, Abdulbari HA, Investigating the drag reduction performance of rigid polymer–carbon nanotubes complexes, J Appl Fluid Mech 2016,;9(3) 1041–9.
DOI: 10.18869/acadpub.jafm.68.228.24332
Google Scholar
[17]
Ling FWM, Heidarinik S, Abdulbari HA, Polymer-surfactant complexes effect on the flow in microchannels: an experimental approach, Chem Eng Commun 2021,;208(5) 775–86.
DOI: 10.1080/00986445.2020.1764944
Google Scholar
[18]
Michaelides S, Hashlamoun KW, Charpentier T, de Boer G, Hunt P, Sarginson H, et al., Polymer-induced drag reduction in dilute newtonian and semi-dilute non-newtonian fluids: An assessment of the double-gap concentric cylinder method, Ind Eng Chem Res 2022,;61(30) 11197–208.
DOI: 10.1021/acs.iecr.2c00899
Google Scholar
[19]
Doi A, Mikami N, Dynamics of hydrogen-bonded OH stretches as revealed by single-mode infrared-ultraviolet laser double resonance spectroscopy on supersonically cooled clusters of phenol, J Chem Phys 2008,;129(15) 154308.
DOI: 10.1063/1.2988494
Google Scholar
[20]
Jordanov B, Tsankov D, Korte EH, Peculiarities in the stretching vibrations of the methylene groups, J Mol Struct 2003,;651–653 101–7.
DOI: 10.1016/s0022-2860(02)00632-4
Google Scholar
[21]
Van Hoozen Jr. BL, Petersen PB, Origin of the 900 cm−1 broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids, J Chem Phys 2015,;142(10) 104308.
DOI: 10.1063/1.4914147
Google Scholar
[22]
Abdulbari HA, Ling FWM, Hassan Z, Thin HJ, Experimental investigations on biopolymer in enhancing the liquid flow in microchannel, Adv Polym Technol 2018,;37(8) 3136–45.
DOI: 10.1002/adv.22084
Google Scholar
[23]
Raei B, The effect of polymeric drag reducing agent on pressure drop reduction in circular pipes: Experimental and statistical investigation, J Indian Chem Soc 2023,;100(3) 100905.
DOI: 10.1016/j.jics.2023.100905
Google Scholar
[24]
Rueda MM, Auscher M-C, Fulchiron R, Périé T, Martin G, Sonntag P, et al., Rheology and applications of highly filled polymers: A review of current understanding, Prog Polym Sci 2017,;66 22–53.
DOI: 10.1016/j.progpolymsci.2016.12.007
Google Scholar
[25]
Edomwonyi-Otu LC, Chinaud M, Angeli P, Effect of drag reducing polymer on horizontal liquid–liquid flows, Exp Therm Fluid Sci 2015,;64 164–74.
DOI: 10.1016/j.expthermflusci.2015.02.018
Google Scholar
[26]
Sokhal KS, Gangacharyulu D, Bulasara VK, Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe, Carbohydr Polym 2018,;181 1017–25.
DOI: 10.1016/j.carbpol.2017.11.048
Google Scholar
[27]
Guo X, Chen X, Zhou W, Wei J, Effect of polymer drag reducer on rheological properties of rocket kerosene solutions, Vol. 15, Materials. 2022. p.3343.
DOI: 10.3390/ma15093343
Google Scholar
[28]
Gürel U, Giuntoli A, Shear thinning from bond orientation in model unentangled bottlebrush polymer melts, Macromolecules 2023,;56(15) 5708–17.
DOI: 10.1021/acs.macromol.3c01061
Google Scholar
[29]
de Gennes P-G, Introduction to polymer dynamics, Cambridge: Cambridge University Press; 1990.
Google Scholar
[30]
Yuan B, Ritzoulis C, Chen J, Extensional and shear rheology of okra polysaccharides in the presence of artificial saliva, NPJ Sci Food 2018,;2(1) 20.
DOI: 10.1038/s41538-018-0029-1
Google Scholar
[31]
Shi P, Hu H, Wen J, Xie L, Drag reduction and degradation of binary polymer solutions, J Nonnewton Fluid Mech 2024,;330 105279.
DOI: 10.1016/j.jnnfm.2024.105279
Google Scholar