A Review on ZnO Nanoparticles Characterization, Different Methods of Synthesizes and Applications

Article Preview

Abstract:

Zinc oxide is the most widely used nanomaterial in nanotechnology due to its outstanding properties and characterizations. Enormous attention has arisen due to its unique physical properties consists of a wide energy band gap of 3.37 eV at ambient temperature and large binding energy of 60 meV, which give development to an extensive range of potential applications in many areas such as electronics, solar cells, and biological applications. The size and shape of nanoparticles are significant to ensure the process becomes faster, cheaper and more efficient compared with traditional methods. By having more active area of nanoparticles, the biological and chemical process become more effectives. The biological activity of ZnO Nanoparticles was investigated through the antibacterial activity, anti-microbial activity, as anticancer and antioxidant material. The method used to prepare the ZnO Nanoparticles also take an important part which is to reduce the by-product formation when applied in wastewater treatment. This article summarizes different preparation methods of ZnO Nanoparticles and its application uses. The ZnO nanoparticles can be used the various applications, for example for the antibacterial, anti-cancer, anti-microbial, antioxidant and for wastewater treatment applications.

You might also be interested in these eBooks

Info:

Pages:

35-55

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sharma, R. Dhiman, N. Rokana, H. Panwar, Nanotechnology: An untapped resource for food packaging, Frontiers in Microbiology, 8 (2017), 1735.

DOI: 10.3389/fmicb.2017.01735

Google Scholar

[2] A. Bratovcic, C.A. Odobasi, C.S. Catic, I. Šestan, Application of polymer nanocomposite materials in food packaging, Croatian Journal of Food Science and Technology, 7(2015),86-94.

Google Scholar

[3] N. Bumbudsanpharoke, S. Ko, Nano-food packaging: An overview of market, migration research, and safety regulations, Journal of Food Science, 80 (2015), R910-R923.

DOI: 10.1111/1750-3841.12861

Google Scholar

[4] L. E. Trujillo, R. Ávalos, S. Granda, L. S. Guerra, J. M. País-Chanfrau, Nanotechnology applications for food and bioprocessing industries, Biology and Medicine, 8 (2016), 289.

Google Scholar

[5] S. D. F. Mihindukulasuriya, L. T. Lim, Nanotechnology development in food packaging: A review, Trends in Food Science and Technology, 40 (2014), 149-167.

DOI: 10.1016/j.tifs.2014.09.009

Google Scholar

[6] A. Nopwinyuwong, S. Trevanich, P. Suppakul, Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage, Talanta, 81 (2010), 1126-1132.

DOI: 10.1016/j.talanta.2010.02.008

Google Scholar

[7] M. Hoseinnejad, S. M. Jafari, I. Katouzian, Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications, Critical Reviews in Microbiology, 44 (2018), 161-181.

DOI: 10.1080/1040841x.2017.1332001

Google Scholar

[8] D.S. Cha, M.S. Chinnan, Biopolymer-based antimicrobial packaging: A review, Critical Reviews in Food Science and Nutrition, 44 (2004), 223-237.

DOI: 10.1080/10408690490464276

Google Scholar

[9] J. Sangsuwan, N. Rattanapanone, P. Rachtanapun, Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple, Postharvest Biology and Technology, 49 (2008), 403-410.

DOI: 10.1016/j.postharvbio.2008.02.014

Google Scholar

[10] M. Hosseinnejad, S. M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan, International Journal of Biological Macromolecules, 85 (2016), 467-475.

DOI: 10.1016/j.ijbiomac.2016.01.022

Google Scholar

[11] A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nanomicro Letters, 7 (2015), 219-242.

DOI: 10.1007/s40820-015-0040-x

Google Scholar

[12] J. Wojnarowicz, A. Opalinska, T. Chudoba, S. Gierlotka, R. Mukhovskyi, E. Pietrzykowska, K. Sobczak, W. Lojkowski, Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis, Journal of Nanomaterials, 1 (2016), 2789871.

DOI: 10.1155/2016/2789871

Google Scholar

[13] D. S. Chauhan, C. S. A. Gopal, D. Kumar, N. Mahato, M. A. Quraishi, M. H. Cho, Microwave induced facile synthesis and characterization of ZnO nanoparticles as efficient antibacterial agents, Materials Discovery, 11 (2018), 19-25.

DOI: 10.1016/j.md.2018.05.001

Google Scholar

[14] P. X. Gao, Y. Ding, Z. L. Wang, Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst, Nano Letters, 3 (2003), 1315-1320.

DOI: 10.1021/nl034548q

Google Scholar

[15] I. M. El-Nahhal, A. A. Elmanama, N. M. El Ashgar, N. Amara, M. Selmane, M. M. Chehimi, Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity, Ultrasonics Sonochemistry, 38 (2017), 478-487.

DOI: 10.1016/j.ultsonch.2017.03.050

Google Scholar

[16] D. Valerini, L. Tammaro, F. Di Benedetto, G. Vigliotta, L. Capodieci, R. Terzi, A. Rizzo, Aluminum-doped zinc oxide coatings on polylactic acid films for antimicrobial food packaging, Thin Solid Films, 645 (2018), 187-192.

DOI: 10.1016/j.tsf.2017.10.038

Google Scholar

[17] C. Verrier, E. Appert, O. Chaix-Pluchery, L. Rapenne, Q. Rafhay, A. Kaminski-Cachopo, V. Consonni, Effects of the pH on the formation and doping mechanisms of ZnO nanowires using aluminum nitrate and ammonia, Inorganic Chemistry, 56 (2017), 13111-13122.

DOI: 10.1021/acs.inorgchem.7b01916

Google Scholar

[18] A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: A review, Materials, 7 (2014), 2833-2881.

DOI: 10.3390/ma7042833

Google Scholar

[19] S. S. Alias, A. B. Ismail, A. A. Mohamad, Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation, Journal of Alloys and Compounds, 499 (2010), 231-237.

DOI: 10.1016/j.jallcom.2010.03.174

Google Scholar

[20] P. B. Taunk, R. Das, D. P. Bisen, R. Kumar Tamrakar, Structural characterization and photoluminescence properties of zinc oxide nanoparticles synthesized by chemical route method, Journal of Radiation Research and Applied Sciences, 8 (2015), 433-438.

DOI: 10.1016/j.jrras.2015.03.006

Google Scholar

[21] P. J. P. Espitia, N. D. F. F. Soares, J. S. Dos Reis Coimbra, N. J. De Andrade, R. S. Cruz, E. A. A. Medeiros, Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications, Food and Bioprocess Technology, 5 (2012), 1447-1464.

DOI: 10.1007/s11947-012-0797-6

Google Scholar

[22] M. T. Swihart, Vapor-phase synthesis of nanoparticles, Current Opinion in Colloid and Interface Science, 8 (2003), 127-133.

DOI: 10.1016/s1359-0294(03)00007-4

Google Scholar

[23] G. J. Lee, E. H. Choi, S. H. Nam, J. S. Lee, J. H. Boo, S. D. Oh, S. H. Choi, J. H. Cho, M. Y. Yoon, Optical sensing properties of ZnO nanoparticles prepared by spray pyrolysis, Journal of Nanoscience and Nanotechnology, 19 (2019), 1048-1051.

DOI: 10.1166/jnn.2019.15918

Google Scholar

[24] P. Casey, R. Hannick, A. Hill, Nanoparticle technologies and applications, Nanostructure Control of Materials, 1 (2006), 1-31.

Google Scholar

[25] M. Hessien, E. Da'na, A.L. Kawther, M.M. Khalaf, Nano ZnO (hexagonal wurtzite) of different shapes under various conditions: Fabrication and characterization, Materials Research Express, 6 (2019), 085057.

DOI: 10.1088/2053-1591/ab1c21

Google Scholar

[26] M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract-mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Materials Science in Semiconductor Processing, 39 (2015), 621-628.

DOI: 10.1016/j.mssp.2015.06.005

Google Scholar

[27] K.V. Pavani, N. S. Kumar, B. B. Sangameswaran, Synthesis of lead nanoparticles by Aspergillus species, Polish Journal of Microbiology, 61 (2012), 61-63.

DOI: 10.33073/pjm-2012-008

Google Scholar

[28] H. Agarwal, S. V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach, Resources-Efficient Technologies, 3 (2017), 406-413.

DOI: 10.1016/j.reffit.2017.03.002

Google Scholar

[29] Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria, African Journal of Microbiology Research, 5 (2011), 1368-1373.

DOI: 10.5897/ajmr10.159

Google Scholar

[30] W. He, H. K. Kim, W. G. Wamer, D. Melka, J. H. Callahan, J. J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, Journal of the American Chemical Society, 136 (2013), 750-757.

DOI: 10.1021/ja410800y

Google Scholar

[31] M. Niskanen, M. Kuisma, O. Cramariuc, V. Golovanov, T. I. Hukka, N. Tkachenko, T. T. Rantala, Porphyrin adsorbed on the (101̅0) surface of the wurtzite structure of ZnO – Conformation induced effects on the electron transfer characteristics, Physical Chemistry Chemical Physics, 15 (2013), 17408-17418.

DOI: 10.1039/c3cp51685g

Google Scholar

[32] B. K. Teo, X. H. Sun, From top-down to bottom-up to hybrid nanotechnologies: Road to nanodevices, Journal of Cluster Science, 17 (2006), 529-540.

DOI: 10.1007/s10876-006-0086-5

Google Scholar

[33] Y. Wang, Y. Xia, Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals, Nano Letters, 4 (2004), 2047-2050.

DOI: 10.1021/nl048689j

Google Scholar

[34] H. Van den Rul, D. Mondelaers, M. K. Van Bael, Water-based wet chemical synthesis of (doped) ZnO nanostructures, Journal of Sol-Gel Science and Technology, 39 (2006), 41-47.

DOI: 10.1007/s10971-006-6322-5

Google Scholar

[35] Y. Zhou, W. Wu, G. Hu, H. Wu, S. Cui, Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine, Materials Research Bulletin, 43 (2008), 2113-2118.

DOI: 10.1016/j.materresbull.2007.09.024

Google Scholar

[36] G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Advanced Functional Materials, 19 (2009), 842-852.

DOI: 10.1002/adfm.200801081

Google Scholar

[37] K. Elen, A. Kelchtermans, H. Van den Rul, R. Peeters, J. Mullens, A. Hardy, M. K. Van Bael, Comparison of two novel solution-based routes for the synthesis of equiaxed ZnO nanoparticles, Journal of Nanomaterials, 2011 (2011), 1-6.

DOI: 10.1155/2011/390621

Google Scholar

[38] M. Ristić, S. Musić, M. Ivanda, S. Popović, Sol-gel synthesis and characterization of nanocrystalline ZnO powders, Journal of Alloys and Compounds, 397 (2005), L1-L4.

DOI: 10.1016/j.jallcom.2005.01.045

Google Scholar

[39] A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Advances in Colloid and Interface Science, 249 (2017), 37-52.

DOI: 10.1016/j.cis.2017.07.033

Google Scholar

[40] E. Selvarajan, V. Mohanasrinivasan, Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07, Materials Letters, (2013).

DOI: 10.1016/j.matlet.2013.09.020

Google Scholar

[41] R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi Journal of Biological Sciences, Vol. 23, Issue 4 (2016), 517–523.

DOI: 10.1016/j.sjbs.2015.05.016

Google Scholar

[42] C. Zou, F. Liang, S. Xue, Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation, Research on Chemical Intermediates, Vol. 41 (2015), 5167–5176.

DOI: 10.1007/s11164-014-1620-y

Google Scholar

[43] K. K. Kim, D. Kim, S. K. Kim, S. M. Park, J. K. Song, Formation of ZnO nanoparticles by laser ablation in neat water, Chemical Physics Letters, Vol. 511, Issues 1–3 (2011), 116–120.

DOI: 10.1016/j.cplett.2011.06.017

Google Scholar

[44] G. W. Yang, Laser ablation in liquids: Applications in the synthesis of nanocrystals, Progress in Materials Science, Vol. 52, Issue 4 (2007), 648–698.

DOI: 10.1016/j.pmatsci.2006.10.016

Google Scholar

[45] F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation and size control of silver nanoparticles by laser ablation in aqueous solution, The Journal of Physical Chemistry B, Vol. 104, Issue 39 (2000), 9111–9117.

DOI: 10.1021/jp001336y

Google Scholar

[46] K. Y. Niu, J. Yang, S. A. Kulinich, J. Sun, X. W. Du, Hollow nanoparticles of metal oxides and sulfides: Fast preparation via laser ablation in liquid, Langmuir, Vol. 26, Issue 22 (2010), 16652–16657.

DOI: 10.1021/la1033146

Google Scholar

[47] Z. R. Dai, Z. W. Pan, Z. L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Advanced Functional Materials, Vol. 13, Issue 1 (2003), 9–24.

DOI: 10.1002/adfm.200390013

Google Scholar

[48] Z. L. Wang, Zinc oxide nanostructures: growth, properties, and applications, Journal of Physics: Condensed Matter, Vol. 16, Issue 25 (2004), R829.

DOI: 10.1088/0953-8984/16/25/r01

Google Scholar

[49] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science, Vol. 291, Issue 5510 (2001), 1947–1949.

DOI: 10.1126/science.1058120

Google Scholar

[50] H. Schmidt, Nanoparticles by chemical synthesis, processing to materials, and innovative applications, Applied Organometallic Chemistry, Vol. 15, Issue 5 (2001), 331–343.

DOI: 10.1002/aoc.169

Google Scholar

[51] M. Kursawe, R. Anselmann, V. Hilarius, et al., Nano-particles by wet chemical processing in commercial applications, Journal of Sol-Gel Science and Technology, Vol. 33 (2005), 71–74.

DOI: 10.1007/s10971-005-6702-2

Google Scholar

[52] S. Sepulveda-Guzman, B. Reeja-Jayan, E. de La Rosa, et al., Synthesis of assembled ZnO structures by precipitation method in aqueous media, Materials Chemistry and Physics, Vol. 115, Issue 1 (2009), 172–178.

DOI: 10.1016/j.matchemphys.2008.11.030

Google Scholar

[53] V. Chhabra, M. L. Free, P. K. Kang, S. E. Truesdail, D. O. Shah, Microemulsions as an emerging technology: From petroleum recovery to nanoparticle synthesis, Tenside, Surfactants, Detergents, Vol. 34, Issue 3 (1997), 156–168.

DOI: 10.1515/tsd-1997-340304

Google Scholar

[54] J. H. Schulman, W. Stoeckenius, L. M. Prince, Mechanism of formation and structure of micro emulsions by electron microscopy, The Journal of Physical Chemistry, 63 (1959), 1677–1680.

DOI: 10.1021/j150580a027

Google Scholar

[55] M. P. Pileni, Structure and reactivity in reverse micelles, Elsevier, 1989, 230–262.

Google Scholar

[56] L. Wang, Y. Zhang, M. Muhammed, Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions, Journal of Materials Chemistry, 5 (1995), 309–314.

DOI: 10.1039/jm9950500309

Google Scholar

[57] M. Boutonnet, J. Kizling, P. Stenius, G. Maire, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids and Surfaces, 5 (1982), 209–225.

DOI: 10.1016/0166-6622(82)80079-6

Google Scholar

[58] C. H. Chew, L. M. Can, D. O. Shah, The effect of alkanes on the formation of ultrafine silver bromide particles in ionic w/o microemulsions, Journal of Dispersion Science and Technology, 11 (1990), 593–609.

DOI: 10.1080/01932699008943285

Google Scholar

[59] P. Ayyub, M. Multani, M. Barma, V. R. Palkar, R. Vijayaraghavan, Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3, Journal of Physics C: Solid State Physics, 21 (1988), 2229.

DOI: 10.1088/0022-3719/21/11/014

Google Scholar

[60] M. Lal, V. Chhabra, P. Ayyub, A. Maitra, Preparation and characterization of ultrafine TiO2 particles in reverse micelles by hydrolysis of titanium di-ethylhexyl sulfosuccinate, Journal of Materials Research, 13 (1998), 1249–1254.

DOI: 10.1557/jmr.1998.0178

Google Scholar

[61] H. Kumar, R. Rani, Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route, International Letters of Chemistry, Physics and Astronomy, 14 (2013), 26–36.

DOI: 10.56431/p-q38442

Google Scholar

[62] P. Lianos, J. K. Thomas, Cadmium sulfide of small dimensions produced in inverted micelles, Chemical Physics Letters, 125 (1986), 299–302.

DOI: 10.1016/0009-2614(86)87069-5

Google Scholar

[63] X. Li, G. He, G. Xiao, H. Liu, M. Wang, Synthesis and morphology control of ZnO nanostructures in microemulsions, Journal of Colloid and Interface Science, 333 (2009), 465–473.

DOI: 10.1016/j.jcis.2009.02.029

Google Scholar

[64] M. Singhai, V. Chhabra, P. Kang, D. O. Shah, Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion, Materials Research Bulletin, 32 (1997), 239–247.

DOI: 10.1016/s0025-5408(96)00175-4

Google Scholar

[65] X. Hou, F. Zhou, W. Liu, A facile low-cost synthesis of ZnO nanorods via a solid-state reaction at low temperature, Materials Letters, 60 (2006), 3786–3788.

DOI: 10.1016/j.matlet.2006.03.114

Google Scholar

[66] L. L. Hench, J. K. West, The sol-gel process, Chemical Reviews, 90 (1990), 33–72.

Google Scholar

[67] L. Spanhel, M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society, 113 (1991), 2826–2833.

DOI: 10.1021/ja00008a004

Google Scholar

[68] E. A. Meulenkamp, Synthesis and growth of ZnO nanoparticles, The Journal of Physical Chemistry B, 102 (1998), 5566–5572.

Google Scholar

[69] Y. Liu, X. Gan, B. Zhou, et al., Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode, Journal of Hazardous Materials, 171 (2009), 678–683.

DOI: 10.1016/j.jhazmat.2009.06.054

Google Scholar

[70] M. Vafaee, M. S. Ghamsari, Preparation and characterization of ZnO nanoparticles by a novel sol–gel route, Materials Letters, 61 (2007), 3265–3268.

DOI: 10.1016/j.matlet.2006.11.089

Google Scholar

[71] X. Jiang, Y. Liu, Y. Gao, X. Zhang, L. Shi, Preparation of one-dimensional nanostructured ZnO, Particuology, 8 (2010), 383–385.

DOI: 10.1016/j.partic.2010.05.005

Google Scholar

[72] J. Walker, J. Johnston, Tetramethylammonium hydroxide, Journal of the Chemical Society, Transactions, 87 (1905), 955–961.

Google Scholar

[73] S. D. Škapin, G. Dražič, Z. C. Orel, Microstructure of nanoscale zinc oxide crystallites, Materials Letters, 61 (2007), 2783–2788.

DOI: 10.1016/j.matlet.2006.10.030

Google Scholar

[74] Z. Hu, G. Oskam, P. C. Searson, Influence of solvent on the growth of ZnO nanoparticles, Journal of Colloid and Interface Science, 263 (2003), 454–460.

DOI: 10.1016/s0021-9797(03)00205-4

Google Scholar

[75] J. E. Rodrıguez-Paéz, A. C. Caballero, M. Villegas, M. Moure, P. Duran, J. F. Fernández, Controlled precipitation methods: formation mechanism of ZnO nanoparticles, Journal of the European Ceramic Society, 21 (2001), 925–930.

DOI: 10.1016/s0955-2219(00)00283-1

Google Scholar

[76] S. S. Kumar, P. Venkateswarlu, V. R. Rao, G. N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, International Nano Letters, 3 (2013), 1–6.

DOI: 10.1186/2228-5326-3-30

Google Scholar

[77] L. Wang, M. Muhammed, Synthesis of zinc oxide nanoparticles with controlled morphology, Journal of Materials Chemistry, 9 (1999), 2871–2878.

DOI: 10.1039/a907098b

Google Scholar

[78] A. M. Pourrahimi, D. Liu, R. L. Andersson, V. Ström, U. W. Gedde, R. T. Olsson, Aqueous synthesis of (210) oxygen-terminated defect-free hierarchical ZnO particles and their heat treatment for enhanced reactivity, Langmuir, 32 (2016), 11002–11013.

DOI: 10.1021/acs.langmuir.6b03263

Google Scholar

[79] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids and Surfaces B: Biointerfaces, 28 (2003), 313–318.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[80] K. Prasad, A. K. Jha, ZnO nanoparticles: synthesis and adsorption study, Natural Science, 1 (2009), 129.

Google Scholar

[81] J. Qu, X. Yuan, X. Wang, P. Shao, Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L., Environmental Pollution, 159 (2011), 1783–1788.

DOI: 10.1016/j.envpol.2011.04.016

Google Scholar

[82] J. Qu, C. Luo, J. Hou, Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants, Micro & Nano Letters, 6 (2011), 174–176.

DOI: 10.1049/mnl.2011.0004

Google Scholar

[83] S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chemistry, 13 (2011), 2638–2650.

DOI: 10.1039/c1gc15386b

Google Scholar

[84] M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria, Advanced Powder Technology, 26 (2015), 1294–1299.

DOI: 10.1016/j.apt.2015.07.001

Google Scholar

[85] P. Golinska, M. Wypij, A. P. Ingle, I. Gupta, H. Dahm, M. Rai, Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity, Applied Microbiology and Biotechnology, 98 (2014), 8083–8097.

DOI: 10.1007/s00253-014-5953-7

Google Scholar

[86] L. Fu, Z. Fu, Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity, Ceramics International, 41 (2015), 2492–2496.

DOI: 10.1016/j.ceramint.2014.10.069

Google Scholar

[87] B. Ajitha, Y. A. K. Reddy, P. S. Reddy, Biogenic nanoscale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121 (2014), 164–172.

DOI: 10.1016/j.saa.2013.10.077

Google Scholar

[88] S. Kalathil, J. Lee, M. H. Cho, Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water, Green Chemistry, 13 (2011), 1482–1485.

DOI: 10.1039/c1gc15309a

Google Scholar

[89] X. Zhang, S. Yan, R. D. Tyagi, R. Y. Surampalli, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere, 82 (2011), 489–494.

DOI: 10.1016/j.chemosphere.2010.10.023

Google Scholar

[90] K. Prasad, A. K. Jha, Biosynthesis of CdS nanoparticles: an improved green and rapid procedure, Journal of Colloid and Interface Science, 342 (2010), 68–72.

DOI: 10.1016/j.jcis.2009.10.003

Google Scholar

[91] C. Jayaseelan, A. A. Rahuman, A. V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. B. Rao, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90 (2012), 78–84.

DOI: 10.1016/j.saa.2012.01.006

Google Scholar

[92] M. Z. Hussein, W. H. W. N. Azmin, M. Mustafa, A. H. Yahaya, Bacillus cereus as a biotemplating agent for the synthesis of zinc oxide with raspberry- and plate-like structures, Journal of Inorganic Biochemistry, 103 (2009), 1145–1150.

DOI: 10.1016/j.jinorgbio.2009.05.016

Google Scholar

[93] Y. Huang, D. Xiao, B. M. Burton-Freeman, I. Edirisinghe, Chemical changes of bioactive phytochemicals during thermal processing, Journal of Food Science and Technology, (2016).

DOI: 10.1016/b978-0-08-100596-5.03055-9

Google Scholar

[94] P. Kajla, A. Sharma, D. R. Sood, Flaxseed—a potential functional food source, Journal of Food Science and Technology, 52 (2015), 1857–1871.

DOI: 10.1007/s13197-014-1293-y

Google Scholar

[95] A. Goyal, V. Sharma, N. Upadhyay, S. Gill, M. Sihag, Flax and flaxseed oil: An ancient medicine & modern functional food, Journal of Food Science and Technology, 51 (2014), 1633–1653.

DOI: 10.1007/s13197-013-1247-9

Google Scholar

[96] R. K. Saini, P. Prasad, R. V. Sreedhar, A. Naidu, X. Shang, Y.-S. Keum, Omega-3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—a review, Antioxidants, 10 (2021), 1627.

DOI: 10.3390/antiox10101627

Google Scholar

[97] N. Halligudi, Pharmacological properties of flax seeds: a review, Hygeia Journal for Drugs and Medicines, 4 (2012), 70–77.

Google Scholar

[98] A. Mueed, S. Shibli, S. A. Korma, P. Madjirebaye, T. Esatbeyoglu, Z. Deng, Flaxseed bioactive compounds: Chemical composition, functional properties, food applications, and health benefits-related gut microbes, Foods, 11 (2022), 3307.

DOI: 10.3390/foods11203307

Google Scholar

[99] C. K. O. Dzuvor, J. T. Taylor, C. Acquah, S. Pan, D. Agyei, Bioprocessing of functional ingredients from flaxseed, Molecules, 23 (2018), 2444.

DOI: 10.3390/molecules23102444

Google Scholar

[100] A. E.-D. A. Bekhit, A. Shavandi, T. Jodjaja, J. Birch, S. Teh, I. A. M. Ahmed, F. Y. Al-Juhaimi, P. Saeedi, A. A. Bekhit, Flaxseed: composition, detoxification, utilization, and opportunities, Biocatalysis and Agricultural Biotechnology, 13 (2018), 129–152.

DOI: 10.1016/j.bcab.2017.11.017

Google Scholar

[101] K. F. Shakir, B. Madhusudhan, Hypocholesterolemic and hepatoprotective effects of flaxseed chutney: Evidence from animal studies, Indian J. Clin. Biochem., 22 (2007), 117.

DOI: 10.1007/bf02912893

Google Scholar

[102] M. M. Alves, S. M. Andrade, L. Grenho, M. H. Fernandes, C. Santos, M. F. Montemor, Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications, Mater. Sci. Eng. C, 101 (2019), 76–87.

DOI: 10.1016/j.msec.2019.03.084

Google Scholar

[103] J. Jeevanandam, Y. S. Chan, M. K. Danquah, Biosynthesis of metal and metal oxide nanoparticles, ChemBioEng Rev., 3 (2016), 55–67.

DOI: 10.1002/cben.201500018

Google Scholar

[104] S. S. Hassan, W. I. El Azab, H. R. Ali, M. S. Mansour, Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene, Adv. Nat. Sci. Nanosci. Nanotechnol., 6 (2015), 045012.

DOI: 10.1088/2043-6262/6/4/045012

Google Scholar

[105] F. M. Mohammadi, N. Ghasemi, Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract, J. Nanostructure Chem., 8 (2018), 93–102.

DOI: 10.1007/s40097-018-0257-6

Google Scholar

[106] N. Pantidos, L. E. Horsfall, Biological synthesis of metallic nanoparticles by bacteria, fungi and plants, J. Nanomed. Nanotechnol., 5 (2014), 1000233.

DOI: 10.4172/2157-7439.1000233

Google Scholar

[107] T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, J. Clean. Prod., 83 (2014), 413–419.

DOI: 10.1016/j.jclepro.2014.07.006

Google Scholar

[108] M. H. Al-Musawi, K. M. Ibrahim, S. Albukhaty, Phytochemical Analysis, and Anti-Microbial Activities of Ethanol Extract of Cordia myxa Fruit: In vitro Study, Res. J. Pharm. Technol., 15 (2022), 2871–2876.

DOI: 10.52711/0974-360x.2022.00479

Google Scholar

[109] A. Altemimi, N. Lakhssassi, A. Baharlouei, D. G. Watson, D. A. Lightfoot, Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts, Plants, 6 (2017), 42.

DOI: 10.3390/plants6040042

Google Scholar

[110] S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application, Mater. Sci. Eng. C, 98 (2019), 250–255.

DOI: 10.1016/j.msec.2018.12.090

Google Scholar

[111] S. Yallappa, J. Manjanna, B. L. Dhananjaya, U. Vishwanatha, B. S. Ravishankar, H. Gururaj, P. Niranjana, B. S. Hungund, Phytochemically Functionalized Cu and Ag Nanoparticles Embedded in MWCNTs for Enhanced Antimicrobial and Anticancer Properties, Nano-Micro Lett., 8 (2016), 120–130.

DOI: 10.1007/s40820-015-0066-0

Google Scholar

[112] E. Burlacu, C. Tanase, N.-A. Coman, L. Berta, A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications, Molecules, 24 (2019), 4354.

DOI: 10.3390/molecules24234354

Google Scholar

[113] S. Santos, R. Pinto, S. Rocha, P. Marques, C. Neto, A. Silvestre, C. Freire, Unveiling the Chemistry behind the Green Synthesis of Metal Nanoparticles, ChemSusChem, 7 (2014), 2704–2711.

DOI: 10.1002/cssc.201402126

Google Scholar

[114] L. C. Gruen, Interaction of amino acids with silver(I) ions, Biochim. Biophys. Acta, 386 (1975), 270–274.

Google Scholar

[115] Y. F. Huang, Y. W. Lin, H. T. Chang, Growth of various Au–Ag nanocomposites from gold seeds in amino acid solutions, Nanotechnology, 17 (2006), 4885.

DOI: 10.1088/0957-4484/17/19/018

Google Scholar

[116] A. E. Nezhad, S. R. Amini, S. Davaran, J. Barar, Y. Ghasemi, Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs), Bull. Korean Chem. Soc., 33 (2012), 3957–3962.

DOI: 10.5012/bkcs.2012.33.12.3957

Google Scholar

[117] H. R. El-Seedi, R. M. El-Shabasy, S. A. Khalifa, A. Saeed, A. Shah, R. Shah, F. J. Iftikhar, M. M. Abdel-Daim, A. Omri, N. H. Hajrahand, Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications, RSC Adv., 9 (2019), 24539–24559.

DOI: 10.1039/c9ra02225b

Google Scholar

[118] S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang, Green synthesis of silver nanoparticles using Capsicum annuum L. extract, Green Chem., 9 (2007), 852–858.

DOI: 10.1039/b615357g

Google Scholar

[119] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology, 18 (2007), 105104.

DOI: 10.1088/0957-4484/18/10/105104

Google Scholar

[120] H. Er, H. Yasuda, M. Harada, E. Taguchi, M. Iida, Formation of silver nanoparticles from ionic liquids comprising N-alkylethylenediamine: Effects of dissolution modes of the silver(I) ions in the ionic liquids, Colloids Surf. A Physicochem. Eng. Asp., 522 (2017), 503–513.

DOI: 10.1016/j.colsurfa.2017.03.046

Google Scholar

[121] J. Kesharwani, K. Y. Yoon, J. Hwang, M. Rai, Phytofabrication of silver nanoparticles by leaf extract of Datura metel: Hypothetical mechanism involved in synthesis, J. Bionanoscience, 3 (2009), 39–44.

DOI: 10.1166/jbns.2009.1008

Google Scholar

[122] S. S. Shankar, A. Ahmad, R. Pasricha, M. Sastry, Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes, J. Mater. Chem., 13 (2003), 1822–1826.

DOI: 10.1039/b303808b

Google Scholar

[123] S. Maensiri, P. Laokul, J. Klinkaewnarong, S. Phokha, V. Promarak, S. Seraphin, Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties, J. Optoelectron. Adv. Mater., 10 (2008), 161–165.

Google Scholar

[124] M. I. Burguete, E. García-Verdugo, S. V. Luis, J. A. Restrepo, Preparation of polymer-supported gold nanoparticles based on resins containing ionic liquid-like fragments: Easy control of size and stability, Phys. Chem. Chem. Phys., 13 (2011), 14831–14838.

DOI: 10.1039/c1cp20970a

Google Scholar

[125] Q. Ye, W. Chen, H. Huang, Y. Tang, W. Wang, F. Meng, Iron and zinc ions, potent weapons against multidrug-resistant bacteria, Applied Microbiology and Biotechnology 104 (2020), 5213-5227.

DOI: 10.1007/s00253-020-10600-4

Google Scholar

[126] Y. Jiang, L. Zhang, D. Wen, Y. Ding, Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli, Materials Science and Engineering: C 69 (2016), 1361-1366.

DOI: 10.1016/j.msec.2016.08.044

Google Scholar

[127] L. S. Reddy, M. M. Nisha, M. Joice, P. Shilpa, Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae, Pharmaceutical biology 52 (2014), 1388-1397.

DOI: 10.3109/13880209.2014.893001

Google Scholar

[128] T. Ohira, O. Yamamoto, Correlation between antibacterial activity and crystallite size on ceramics, Chemical Engineering Science 68 (2012), 355-361.

DOI: 10.1016/j.ces.2011.09.043

Google Scholar

[129] N. V. Acar, R. K. Özgül, The bridge between cell survival and cell death: Reactive oxygen species-mediated cellular stress, EXCLI Journal 22 (2023), 520.

Google Scholar

[130] V. Sharma, An investigation into the mechanism of toxicity of zinc oxide nanoparticles, Doctoral dissertation, University of Bradford 2012.

Google Scholar

[131] L. Patrón-Romero, P. A. Luque-Morales, V. A. Loera-Castañeda, M. Á. Leal-Ávila, J. A. Alvelais-Palacios, M. M. González-Ramírez, Mitochondrial dysfunction induced by zinc oxide nanoparticles, Crystals 12 (2022), 1089.

DOI: 10.3390/cryst12081089

Google Scholar

[132] M. Murali, N. Kalegowda, H. G. Gowtham, M. A. Ansari, M. N. Alomary, S. Alghamdi, Plant-mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications, Pharmaceutics 13 (2021), 1662.

DOI: 10.3390/pharmaceutics13101662

Google Scholar

[133] M. Batool, S. Khurshid, W. M. Daoush, S. A. Siddique, T. Nadeem, Green synthesis and biomedical applications of ZnO nanoparticles: Role of pegylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231 (TNBC) cells line, Crystals 11 (2021), 344.

DOI: 10.3390/cryst11040344

Google Scholar

[134] M. Bayat, S. Daei, N. Ziamajidi, R. Abbasalipourkabir, A. Nourian, The protective effects of vitamins A, C, and E on zinc oxide nanoparticles (ZnO NPs)-induced liver oxidative stress in male Wistar rats, Drug and Chemical Toxicology 46 (2023), 209-218.

DOI: 10.1080/01480545.2021.2016809

Google Scholar

[135] D. Guo, C. Wu, H. Jiang, Q. Li, X. Wang, B. J. Chen, Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation, Journal of Photochemistry and Photobiology B: Biology 93 (2008), 119-126.

DOI: 10.1016/j.jphotobiol.2008.07.009

Google Scholar

[136] H. Saleem, S. Zaidi, Developments in the application of nanomaterials for water treatment and their impact on the environment, Nanomaterials 10 (2020), 1764.

DOI: 10.3390/nano10091764

Google Scholar

[137] O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru, Toxicity of Ag, CuO, and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review, Archives of toxicology 87 (2013), 1181-1200.

DOI: 10.1007/s00204-013-1079-4

Google Scholar