p.3
p.11
p.23
p.35
p.57
p.69
p.89
p.105
A Review on ZnO Nanoparticles Characterization, Different Methods of Synthesizes and Applications
Abstract:
Zinc oxide is the most widely used nanomaterial in nanotechnology due to its outstanding properties and characterizations. Enormous attention has arisen due to its unique physical properties consists of a wide energy band gap of 3.37 eV at ambient temperature and large binding energy of 60 meV, which give development to an extensive range of potential applications in many areas such as electronics, solar cells, and biological applications. The size and shape of nanoparticles are significant to ensure the process becomes faster, cheaper and more efficient compared with traditional methods. By having more active area of nanoparticles, the biological and chemical process become more effectives. The biological activity of ZnO Nanoparticles was investigated through the antibacterial activity, anti-microbial activity, as anticancer and antioxidant material. The method used to prepare the ZnO Nanoparticles also take an important part which is to reduce the by-product formation when applied in wastewater treatment. This article summarizes different preparation methods of ZnO Nanoparticles and its application uses. The ZnO nanoparticles can be used the various applications, for example for the antibacterial, anti-cancer, anti-microbial, antioxidant and for wastewater treatment applications.
Info:
Periodical:
Pages:
35-55
DOI:
Citation:
Online since:
January 2026
Keywords:
Price:
Сopyright:
© 2026 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] C. Sharma, R. Dhiman, N. Rokana, H. Panwar, Nanotechnology: An untapped resource for food packaging, Frontiers in Microbiology, 8 (2017), 1735.
[2] A. Bratovcic, C.A. Odobasi, C.S. Catic, I. Šestan, Application of polymer nanocomposite materials in food packaging, Croatian Journal of Food Science and Technology, 7(2015),86-94.
[3] N. Bumbudsanpharoke, S. Ko, Nano-food packaging: An overview of market, migration research, and safety regulations, Journal of Food Science, 80 (2015), R910-R923.
[4] L. E. Trujillo, R. Ávalos, S. Granda, L. S. Guerra, J. M. País-Chanfrau, Nanotechnology applications for food and bioprocessing industries, Biology and Medicine, 8 (2016), 289.
[5] S. D. F. Mihindukulasuriya, L. T. Lim, Nanotechnology development in food packaging: A review, Trends in Food Science and Technology, 40 (2014), 149-167.
[6] A. Nopwinyuwong, S. Trevanich, P. Suppakul, Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage, Talanta, 81 (2010), 1126-1132.
[7] M. Hoseinnejad, S. M. Jafari, I. Katouzian, Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications, Critical Reviews in Microbiology, 44 (2018), 161-181.
[8] D.S. Cha, M.S. Chinnan, Biopolymer-based antimicrobial packaging: A review, Critical Reviews in Food Science and Nutrition, 44 (2004), 223-237.
[9] J. Sangsuwan, N. Rattanapanone, P. Rachtanapun, Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple, Postharvest Biology and Technology, 49 (2008), 403-410.
[10] M. Hosseinnejad, S. M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan, International Journal of Biological Macromolecules, 85 (2016), 467-475.
[11] A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nanomicro Letters, 7 (2015), 219-242.
[12] J. Wojnarowicz, A. Opalinska, T. Chudoba, S. Gierlotka, R. Mukhovskyi, E. Pietrzykowska, K. Sobczak, W. Lojkowski, Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis, Journal of Nanomaterials, 1 (2016), 2789871.
DOI: 10.1155/2016/2789871
[13] D. S. Chauhan, C. S. A. Gopal, D. Kumar, N. Mahato, M. A. Quraishi, M. H. Cho, Microwave induced facile synthesis and characterization of ZnO nanoparticles as efficient antibacterial agents, Materials Discovery, 11 (2018), 19-25.
[14] P. X. Gao, Y. Ding, Z. L. Wang, Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst, Nano Letters, 3 (2003), 1315-1320.
DOI: 10.1021/nl034548q
[15] I. M. El-Nahhal, A. A. Elmanama, N. M. El Ashgar, N. Amara, M. Selmane, M. M. Chehimi, Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity, Ultrasonics Sonochemistry, 38 (2017), 478-487.
[16] D. Valerini, L. Tammaro, F. Di Benedetto, G. Vigliotta, L. Capodieci, R. Terzi, A. Rizzo, Aluminum-doped zinc oxide coatings on polylactic acid films for antimicrobial food packaging, Thin Solid Films, 645 (2018), 187-192.
[17] C. Verrier, E. Appert, O. Chaix-Pluchery, L. Rapenne, Q. Rafhay, A. Kaminski-Cachopo, V. Consonni, Effects of the pH on the formation and doping mechanisms of ZnO nanowires using aluminum nitrate and ammonia, Inorganic Chemistry, 56 (2017), 13111-13122.
[18] A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: A review, Materials, 7 (2014), 2833-2881.
DOI: 10.3390/ma7042833
[19] S. S. Alias, A. B. Ismail, A. A. Mohamad, Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation, Journal of Alloys and Compounds, 499 (2010), 231-237.
[20] P. B. Taunk, R. Das, D. P. Bisen, R. Kumar Tamrakar, Structural characterization and photoluminescence properties of zinc oxide nanoparticles synthesized by chemical route method, Journal of Radiation Research and Applied Sciences, 8 (2015), 433-438.
[21] P. J. P. Espitia, N. D. F. F. Soares, J. S. Dos Reis Coimbra, N. J. De Andrade, R. S. Cruz, E. A. A. Medeiros, Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications, Food and Bioprocess Technology, 5 (2012), 1447-1464.
[22] M. T. Swihart, Vapor-phase synthesis of nanoparticles, Current Opinion in Colloid and Interface Science, 8 (2003), 127-133.
[23] G. J. Lee, E. H. Choi, S. H. Nam, J. S. Lee, J. H. Boo, S. D. Oh, S. H. Choi, J. H. Cho, M. Y. Yoon, Optical sensing properties of ZnO nanoparticles prepared by spray pyrolysis, Journal of Nanoscience and Nanotechnology, 19 (2019), 1048-1051.
[24] P. Casey, R. Hannick, A. Hill, Nanoparticle technologies and applications, Nanostructure Control of Materials, 1 (2006), 1-31.
[25] M. Hessien, E. Da'na, A.L. Kawther, M.M. Khalaf, Nano ZnO (hexagonal wurtzite) of different shapes under various conditions: Fabrication and characterization, Materials Research Express, 6 (2019), 085057.
[26] M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract-mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Materials Science in Semiconductor Processing, 39 (2015), 621-628.
[27] K.V. Pavani, N. S. Kumar, B. B. Sangameswaran, Synthesis of lead nanoparticles by Aspergillus species, Polish Journal of Microbiology, 61 (2012), 61-63.
[28] H. Agarwal, S. V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach, Resources-Efficient Technologies, 3 (2017), 406-413.
[29] Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria, African Journal of Microbiology Research, 5 (2011), 1368-1373.
DOI: 10.5897/ajmr10.159
[30] W. He, H. K. Kim, W. G. Wamer, D. Melka, J. H. Callahan, J. J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, Journal of the American Chemical Society, 136 (2013), 750-757.
DOI: 10.1021/ja410800y
[31] M. Niskanen, M. Kuisma, O. Cramariuc, V. Golovanov, T. I. Hukka, N. Tkachenko, T. T. Rantala, Porphyrin adsorbed on the (101̅0) surface of the wurtzite structure of ZnO – Conformation induced effects on the electron transfer characteristics, Physical Chemistry Chemical Physics, 15 (2013), 17408-17418.
DOI: 10.1039/c3cp51685g
[32] B. K. Teo, X. H. Sun, From top-down to bottom-up to hybrid nanotechnologies: Road to nanodevices, Journal of Cluster Science, 17 (2006), 529-540.
[33] Y. Wang, Y. Xia, Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals, Nano Letters, 4 (2004), 2047-2050.
DOI: 10.1021/nl048689j
[34] H. Van den Rul, D. Mondelaers, M. K. Van Bael, Water-based wet chemical synthesis of (doped) ZnO nanostructures, Journal of Sol-Gel Science and Technology, 39 (2006), 41-47.
[35] Y. Zhou, W. Wu, G. Hu, H. Wu, S. Cui, Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine, Materials Research Bulletin, 43 (2008), 2113-2118.
[36] G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Advanced Functional Materials, 19 (2009), 842-852.
[37] K. Elen, A. Kelchtermans, H. Van den Rul, R. Peeters, J. Mullens, A. Hardy, M. K. Van Bael, Comparison of two novel solution-based routes for the synthesis of equiaxed ZnO nanoparticles, Journal of Nanomaterials, 2011 (2011), 1-6.
DOI: 10.1155/2011/390621
[38] M. Ristić, S. Musić, M. Ivanda, S. Popović, Sol-gel synthesis and characterization of nanocrystalline ZnO powders, Journal of Alloys and Compounds, 397 (2005), L1-L4.
[39] A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Advances in Colloid and Interface Science, 249 (2017), 37-52.
[40] E. Selvarajan, V. Mohanasrinivasan, Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07, Materials Letters, (2013).
[41] R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi Journal of Biological Sciences, Vol. 23, Issue 4 (2016), 517–523.
[42] C. Zou, F. Liang, S. Xue, Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation, Research on Chemical Intermediates, Vol. 41 (2015), 5167–5176.
[43] K. K. Kim, D. Kim, S. K. Kim, S. M. Park, J. K. Song, Formation of ZnO nanoparticles by laser ablation in neat water, Chemical Physics Letters, Vol. 511, Issues 1–3 (2011), 116–120.
[44] G. W. Yang, Laser ablation in liquids: Applications in the synthesis of nanocrystals, Progress in Materials Science, Vol. 52, Issue 4 (2007), 648–698.
[45] F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation and size control of silver nanoparticles by laser ablation in aqueous solution, The Journal of Physical Chemistry B, Vol. 104, Issue 39 (2000), 9111–9117.
DOI: 10.1021/jp001336y
[46] K. Y. Niu, J. Yang, S. A. Kulinich, J. Sun, X. W. Du, Hollow nanoparticles of metal oxides and sulfides: Fast preparation via laser ablation in liquid, Langmuir, Vol. 26, Issue 22 (2010), 16652–16657.
DOI: 10.1021/la1033146
[47] Z. R. Dai, Z. W. Pan, Z. L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Advanced Functional Materials, Vol. 13, Issue 1 (2003), 9–24.
[48] Z. L. Wang, Zinc oxide nanostructures: growth, properties, and applications, Journal of Physics: Condensed Matter, Vol. 16, Issue 25 (2004), R829.
[49] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science, Vol. 291, Issue 5510 (2001), 1947–1949.
[50] H. Schmidt, Nanoparticles by chemical synthesis, processing to materials, and innovative applications, Applied Organometallic Chemistry, Vol. 15, Issue 5 (2001), 331–343.
DOI: 10.1002/aoc.169
[51] M. Kursawe, R. Anselmann, V. Hilarius, et al., Nano-particles by wet chemical processing in commercial applications, Journal of Sol-Gel Science and Technology, Vol. 33 (2005), 71–74.
[52] S. Sepulveda-Guzman, B. Reeja-Jayan, E. de La Rosa, et al., Synthesis of assembled ZnO structures by precipitation method in aqueous media, Materials Chemistry and Physics, Vol. 115, Issue 1 (2009), 172–178.
[53] V. Chhabra, M. L. Free, P. K. Kang, S. E. Truesdail, D. O. Shah, Microemulsions as an emerging technology: From petroleum recovery to nanoparticle synthesis, Tenside, Surfactants, Detergents, Vol. 34, Issue 3 (1997), 156–168.
[54] J. H. Schulman, W. Stoeckenius, L. M. Prince, Mechanism of formation and structure of micro emulsions by electron microscopy, The Journal of Physical Chemistry, 63 (1959), 1677–1680.
DOI: 10.1021/j150580a027
[55] M. P. Pileni, Structure and reactivity in reverse micelles, Elsevier, 1989, 230–262.
[56] L. Wang, Y. Zhang, M. Muhammed, Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions, Journal of Materials Chemistry, 5 (1995), 309–314.
DOI: 10.1039/jm9950500309
[57] M. Boutonnet, J. Kizling, P. Stenius, G. Maire, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids and Surfaces, 5 (1982), 209–225.
[58] C. H. Chew, L. M. Can, D. O. Shah, The effect of alkanes on the formation of ultrafine silver bromide particles in ionic w/o microemulsions, Journal of Dispersion Science and Technology, 11 (1990), 593–609.
[59] P. Ayyub, M. Multani, M. Barma, V. R. Palkar, R. Vijayaraghavan, Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3, Journal of Physics C: Solid State Physics, 21 (1988), 2229.
[60] M. Lal, V. Chhabra, P. Ayyub, A. Maitra, Preparation and characterization of ultrafine TiO2 particles in reverse micelles by hydrolysis of titanium di-ethylhexyl sulfosuccinate, Journal of Materials Research, 13 (1998), 1249–1254.
[61] H. Kumar, R. Rani, Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route, International Letters of Chemistry, Physics and Astronomy, 14 (2013), 26–36.
DOI: 10.56431/p-q38442
[62] P. Lianos, J. K. Thomas, Cadmium sulfide of small dimensions produced in inverted micelles, Chemical Physics Letters, 125 (1986), 299–302.
[63] X. Li, G. He, G. Xiao, H. Liu, M. Wang, Synthesis and morphology control of ZnO nanostructures in microemulsions, Journal of Colloid and Interface Science, 333 (2009), 465–473.
[64] M. Singhai, V. Chhabra, P. Kang, D. O. Shah, Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion, Materials Research Bulletin, 32 (1997), 239–247.
[65] X. Hou, F. Zhou, W. Liu, A facile low-cost synthesis of ZnO nanorods via a solid-state reaction at low temperature, Materials Letters, 60 (2006), 3786–3788.
[66] L. L. Hench, J. K. West, The sol-gel process, Chemical Reviews, 90 (1990), 33–72.
[67] L. Spanhel, M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society, 113 (1991), 2826–2833.
DOI: 10.1021/ja00008a004
[68] E. A. Meulenkamp, Synthesis and growth of ZnO nanoparticles, The Journal of Physical Chemistry B, 102 (1998), 5566–5572.
[69] Y. Liu, X. Gan, B. Zhou, et al., Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode, Journal of Hazardous Materials, 171 (2009), 678–683.
[70] M. Vafaee, M. S. Ghamsari, Preparation and characterization of ZnO nanoparticles by a novel sol–gel route, Materials Letters, 61 (2007), 3265–3268.
[71] X. Jiang, Y. Liu, Y. Gao, X. Zhang, L. Shi, Preparation of one-dimensional nanostructured ZnO, Particuology, 8 (2010), 383–385.
[72] J. Walker, J. Johnston, Tetramethylammonium hydroxide, Journal of the Chemical Society, Transactions, 87 (1905), 955–961.
[73] S. D. Škapin, G. Dražič, Z. C. Orel, Microstructure of nanoscale zinc oxide crystallites, Materials Letters, 61 (2007), 2783–2788.
[74] Z. Hu, G. Oskam, P. C. Searson, Influence of solvent on the growth of ZnO nanoparticles, Journal of Colloid and Interface Science, 263 (2003), 454–460.
[75] J. E. Rodrıguez-Paéz, A. C. Caballero, M. Villegas, M. Moure, P. Duran, J. F. Fernández, Controlled precipitation methods: formation mechanism of ZnO nanoparticles, Journal of the European Ceramic Society, 21 (2001), 925–930.
[76] S. S. Kumar, P. Venkateswarlu, V. R. Rao, G. N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, International Nano Letters, 3 (2013), 1–6.
[77] L. Wang, M. Muhammed, Synthesis of zinc oxide nanoparticles with controlled morphology, Journal of Materials Chemistry, 9 (1999), 2871–2878.
DOI: 10.1039/a907098b
[78] A. M. Pourrahimi, D. Liu, R. L. Andersson, V. Ström, U. W. Gedde, R. T. Olsson, Aqueous synthesis of (210) oxygen-terminated defect-free hierarchical ZnO particles and their heat treatment for enhanced reactivity, Langmuir, 32 (2016), 11002–11013.
[79] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids and Surfaces B: Biointerfaces, 28 (2003), 313–318.
[80] K. Prasad, A. K. Jha, ZnO nanoparticles: synthesis and adsorption study, Natural Science, 1 (2009), 129.
[81] J. Qu, X. Yuan, X. Wang, P. Shao, Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L., Environmental Pollution, 159 (2011), 1783–1788.
[82] J. Qu, C. Luo, J. Hou, Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants, Micro & Nano Letters, 6 (2011), 174–176.
[83] S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chemistry, 13 (2011), 2638–2650.
DOI: 10.1039/c1gc15386b
[84] M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria, Advanced Powder Technology, 26 (2015), 1294–1299.
[85] P. Golinska, M. Wypij, A. P. Ingle, I. Gupta, H. Dahm, M. Rai, Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity, Applied Microbiology and Biotechnology, 98 (2014), 8083–8097.
[86] L. Fu, Z. Fu, Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity, Ceramics International, 41 (2015), 2492–2496.
[87] B. Ajitha, Y. A. K. Reddy, P. S. Reddy, Biogenic nanoscale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121 (2014), 164–172.
[88] S. Kalathil, J. Lee, M. H. Cho, Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water, Green Chemistry, 13 (2011), 1482–1485.
DOI: 10.1039/c1gc15309a
[89] X. Zhang, S. Yan, R. D. Tyagi, R. Y. Surampalli, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere, 82 (2011), 489–494.
[90] K. Prasad, A. K. Jha, Biosynthesis of CdS nanoparticles: an improved green and rapid procedure, Journal of Colloid and Interface Science, 342 (2010), 68–72.
[91] C. Jayaseelan, A. A. Rahuman, A. V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. B. Rao, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90 (2012), 78–84.
[92] M. Z. Hussein, W. H. W. N. Azmin, M. Mustafa, A. H. Yahaya, Bacillus cereus as a biotemplating agent for the synthesis of zinc oxide with raspberry- and plate-like structures, Journal of Inorganic Biochemistry, 103 (2009), 1145–1150.
[93] Y. Huang, D. Xiao, B. M. Burton-Freeman, I. Edirisinghe, Chemical changes of bioactive phytochemicals during thermal processing, Journal of Food Science and Technology, (2016).
[94] P. Kajla, A. Sharma, D. R. Sood, Flaxseed—a potential functional food source, Journal of Food Science and Technology, 52 (2015), 1857–1871.
[95] A. Goyal, V. Sharma, N. Upadhyay, S. Gill, M. Sihag, Flax and flaxseed oil: An ancient medicine & modern functional food, Journal of Food Science and Technology, 51 (2014), 1633–1653.
[96] R. K. Saini, P. Prasad, R. V. Sreedhar, A. Naidu, X. Shang, Y.-S. Keum, Omega-3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—a review, Antioxidants, 10 (2021), 1627.
[97] N. Halligudi, Pharmacological properties of flax seeds: a review, Hygeia Journal for Drugs and Medicines, 4 (2012), 70–77.
[98] A. Mueed, S. Shibli, S. A. Korma, P. Madjirebaye, T. Esatbeyoglu, Z. Deng, Flaxseed bioactive compounds: Chemical composition, functional properties, food applications, and health benefits-related gut microbes, Foods, 11 (2022), 3307.
[99] C. K. O. Dzuvor, J. T. Taylor, C. Acquah, S. Pan, D. Agyei, Bioprocessing of functional ingredients from flaxseed, Molecules, 23 (2018), 2444.
[100] A. E.-D. A. Bekhit, A. Shavandi, T. Jodjaja, J. Birch, S. Teh, I. A. M. Ahmed, F. Y. Al-Juhaimi, P. Saeedi, A. A. Bekhit, Flaxseed: composition, detoxification, utilization, and opportunities, Biocatalysis and Agricultural Biotechnology, 13 (2018), 129–152.
[101] K. F. Shakir, B. Madhusudhan, Hypocholesterolemic and hepatoprotective effects of flaxseed chutney: Evidence from animal studies, Indian J. Clin. Biochem., 22 (2007), 117.
DOI: 10.1007/bf02912893
[102] M. M. Alves, S. M. Andrade, L. Grenho, M. H. Fernandes, C. Santos, M. F. Montemor, Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications, Mater. Sci. Eng. C, 101 (2019), 76–87.
[103] J. Jeevanandam, Y. S. Chan, M. K. Danquah, Biosynthesis of metal and metal oxide nanoparticles, ChemBioEng Rev., 3 (2016), 55–67.
[104] S. S. Hassan, W. I. El Azab, H. R. Ali, M. S. Mansour, Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene, Adv. Nat. Sci. Nanosci. Nanotechnol., 6 (2015), 045012.
[105] F. M. Mohammadi, N. Ghasemi, Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract, J. Nanostructure Chem., 8 (2018), 93–102.
[106] N. Pantidos, L. E. Horsfall, Biological synthesis of metallic nanoparticles by bacteria, fungi and plants, J. Nanomed. Nanotechnol., 5 (2014), 1000233.
[107] T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, J. Clean. Prod., 83 (2014), 413–419.
[108] M. H. Al-Musawi, K. M. Ibrahim, S. Albukhaty, Phytochemical Analysis, and Anti-Microbial Activities of Ethanol Extract of Cordia myxa Fruit: In vitro Study, Res. J. Pharm. Technol., 15 (2022), 2871–2876.
[109] A. Altemimi, N. Lakhssassi, A. Baharlouei, D. G. Watson, D. A. Lightfoot, Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts, Plants, 6 (2017), 42.
[110] S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application, Mater. Sci. Eng. C, 98 (2019), 250–255.
[111] S. Yallappa, J. Manjanna, B. L. Dhananjaya, U. Vishwanatha, B. S. Ravishankar, H. Gururaj, P. Niranjana, B. S. Hungund, Phytochemically Functionalized Cu and Ag Nanoparticles Embedded in MWCNTs for Enhanced Antimicrobial and Anticancer Properties, Nano-Micro Lett., 8 (2016), 120–130.
[112] E. Burlacu, C. Tanase, N.-A. Coman, L. Berta, A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications, Molecules, 24 (2019), 4354.
[113] S. Santos, R. Pinto, S. Rocha, P. Marques, C. Neto, A. Silvestre, C. Freire, Unveiling the Chemistry behind the Green Synthesis of Metal Nanoparticles, ChemSusChem, 7 (2014), 2704–2711.
[114] L. C. Gruen, Interaction of amino acids with silver(I) ions, Biochim. Biophys. Acta, 386 (1975), 270–274.
[115] Y. F. Huang, Y. W. Lin, H. T. Chang, Growth of various Au–Ag nanocomposites from gold seeds in amino acid solutions, Nanotechnology, 17 (2006), 4885.
[116] A. E. Nezhad, S. R. Amini, S. Davaran, J. Barar, Y. Ghasemi, Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs), Bull. Korean Chem. Soc., 33 (2012), 3957–3962.
[117] H. R. El-Seedi, R. M. El-Shabasy, S. A. Khalifa, A. Saeed, A. Shah, R. Shah, F. J. Iftikhar, M. M. Abdel-Daim, A. Omri, N. H. Hajrahand, Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications, RSC Adv., 9 (2019), 24539–24559.
DOI: 10.1039/c9ra02225b
[118] S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang, Green synthesis of silver nanoparticles using Capsicum annuum L. extract, Green Chem., 9 (2007), 852–858.
DOI: 10.1039/b615357g
[119] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology, 18 (2007), 105104.
[120] H. Er, H. Yasuda, M. Harada, E. Taguchi, M. Iida, Formation of silver nanoparticles from ionic liquids comprising N-alkylethylenediamine: Effects of dissolution modes of the silver(I) ions in the ionic liquids, Colloids Surf. A Physicochem. Eng. Asp., 522 (2017), 503–513.
[121] J. Kesharwani, K. Y. Yoon, J. Hwang, M. Rai, Phytofabrication of silver nanoparticles by leaf extract of Datura metel: Hypothetical mechanism involved in synthesis, J. Bionanoscience, 3 (2009), 39–44.
[122] S. S. Shankar, A. Ahmad, R. Pasricha, M. Sastry, Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes, J. Mater. Chem., 13 (2003), 1822–1826.
DOI: 10.1039/b303808b
[123] S. Maensiri, P. Laokul, J. Klinkaewnarong, S. Phokha, V. Promarak, S. Seraphin, Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties, J. Optoelectron. Adv. Mater., 10 (2008), 161–165.
[124] M. I. Burguete, E. García-Verdugo, S. V. Luis, J. A. Restrepo, Preparation of polymer-supported gold nanoparticles based on resins containing ionic liquid-like fragments: Easy control of size and stability, Phys. Chem. Chem. Phys., 13 (2011), 14831–14838.
DOI: 10.1039/c1cp20970a
[125] Q. Ye, W. Chen, H. Huang, Y. Tang, W. Wang, F. Meng, Iron and zinc ions, potent weapons against multidrug-resistant bacteria, Applied Microbiology and Biotechnology 104 (2020), 5213-5227.
[126] Y. Jiang, L. Zhang, D. Wen, Y. Ding, Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli, Materials Science and Engineering: C 69 (2016), 1361-1366.
[127] L. S. Reddy, M. M. Nisha, M. Joice, P. Shilpa, Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae, Pharmaceutical biology 52 (2014), 1388-1397.
[128] T. Ohira, O. Yamamoto, Correlation between antibacterial activity and crystallite size on ceramics, Chemical Engineering Science 68 (2012), 355-361.
[129] N. V. Acar, R. K. Özgül, The bridge between cell survival and cell death: Reactive oxygen species-mediated cellular stress, EXCLI Journal 22 (2023), 520.
[130] V. Sharma, An investigation into the mechanism of toxicity of zinc oxide nanoparticles, Doctoral dissertation, University of Bradford 2012.
[131] L. Patrón-Romero, P. A. Luque-Morales, V. A. Loera-Castañeda, M. Á. Leal-Ávila, J. A. Alvelais-Palacios, M. M. González-Ramírez, Mitochondrial dysfunction induced by zinc oxide nanoparticles, Crystals 12 (2022), 1089.
[132] M. Murali, N. Kalegowda, H. G. Gowtham, M. A. Ansari, M. N. Alomary, S. Alghamdi, Plant-mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications, Pharmaceutics 13 (2021), 1662.
[133] M. Batool, S. Khurshid, W. M. Daoush, S. A. Siddique, T. Nadeem, Green synthesis and biomedical applications of ZnO nanoparticles: Role of pegylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231 (TNBC) cells line, Crystals 11 (2021), 344.
[134] M. Bayat, S. Daei, N. Ziamajidi, R. Abbasalipourkabir, A. Nourian, The protective effects of vitamins A, C, and E on zinc oxide nanoparticles (ZnO NPs)-induced liver oxidative stress in male Wistar rats, Drug and Chemical Toxicology 46 (2023), 209-218.
[135] D. Guo, C. Wu, H. Jiang, Q. Li, X. Wang, B. J. Chen, Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation, Journal of Photochemistry and Photobiology B: Biology 93 (2008), 119-126.
[136] H. Saleem, S. Zaidi, Developments in the application of nanomaterials for water treatment and their impact on the environment, Nanomaterials 10 (2020), 1764.
DOI: 10.3390/nano10091764
[137] O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru, Toxicity of Ag, CuO, and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review, Archives of toxicology 87 (2013), 1181-1200.