The Effect of Deformation Regime on the Contributions of Superplastic Deformation Mechanisms in AA5083-Type Aluminum Alloy

Article Preview

Abstract:

The superplastic deformation behavior, microstructure evolution in the volume and on the FIB-milled surface of the samples of fine-grained AA5083-type alloy with an initial grain size of ~5 µm were investigated, and the role of deformation mechanisms was discussed for two superplastic deformation regimes (1) a strain rate of 1×10-3 s-1 and a temperature of 0.87Ti.m. and (2) a strain rate of 5×10-3 s-1 and a temperature of 0.97Ti.m.. The m values were ~0.45-0.55 and elongations to failure were ~300% and ~600% for the first and second regimes, respectively. According to the shifts of the marker grid lines after straining to e=0.41, GBS contributed ~33% and ~23% to the total strain in the low-temperature and high-temperature deformation, respectively. The dislocation-induced intragranular deformation provided ~30% for the low temperature regime and ~20 % for the high temperature regime, and remaining 30-50% of strain was localized in the striated zones formed at the across grain boundaries due to both GBS and diffusion creep deformation mechanisms. Considering the strain induced by grain elongation for the low and high temperature deformation regimes, it was concluded that diffusion creep contributed 23% and 34% of the total deformation, and the recalculated GBS contribution, including both FIB grid shifts and a portion of the strain localized in the striated regions, was 43% and 38%, respectively.

You might also be interested in these eBooks

Info:

Pages:

11-21

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kawasaki, T.G. Langdon, Review: Achieving superplasticity in metals processed by high-pressure torsion, in: J Mater Sci, 2014.

DOI: 10.1007/s10853-014-8204-5

Google Scholar

[2] T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, J Mater Sci (2009).

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[3] F.A. Mohamed, Creep and Superplasticity: Evolution and Rationalization, Adv Eng Mater 22 (2020).

DOI: 10.1002/adem.201900532

Google Scholar

[4] H. Yoshida, M. Kumagai, S. ichi Matsuda, Superplasticity of aluminium alloys, Sumitomo Keikinzoku Giho/Sumitomo Light Metal Technical Reports (1990).

Google Scholar

[5] E. Alabort, P. Kontis, D. Barba, K. Dragnevski, R.C. Reed, On the mechanisms of superplasticity in Ti-6Al-4V, Acta Mater (2016). https://doi.org/10.1016/j.actamat. 2015.12.003.

DOI: 10.1016/j.actamat.2015.12.003

Google Scholar

[6] A.O. Mosleh, A.V. Mikhaylovskaya, A.D. Kotov, J.S. Kwame, S.A. Aksenov, Superplasticity of Ti-6Al-4V titanium alloy: Microstructure evolution and constitutive modelling, Materials 12 (2019).

DOI: 10.3390/ma12111756

Google Scholar

[7] W. Zhang, H. Ding, M. Cai, W. Yang, J. Li, Low-temperature superplastic deformation mechanism in Ti–6Al–4V alloy processed by friction stir processing, Materials Science and Engineering A 764 (2019) 138261.

DOI: 10.1016/j.msea.2019.138261

Google Scholar

[8] A. V. Mikhaylovskaya, O.A. Yakovtseva, A.G. Mochugovskiy, J. Cifre, I.S. Golovin, Influence of minor Zn additions on grain boundary anelasticity, grain boundary sliding, and superplasticity of Al-Mg-based alloys, J Alloys Compd 926 (2022) 166785.

DOI: 10.1016/j.jallcom.2022.166785

Google Scholar

[9] X.G. Wang, Q.S. Li, R.R. Wu, X.Y. Zhang, L. Ma, A Review on Superplastic Formation Behavior of Al Alloys, Advances in Materials Science and Engineering 2018 (2018).

DOI: 10.1155/2018/7606140

Google Scholar

[10] E. V. Bobruk, M.Yu. Murashkin, I.A. Ramazanov, V.U. Kazykhanov, R.Z. Valiev, Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains, Materials 16 (2023) 727.

DOI: 10.3390/ma16020727

Google Scholar

[11] G. ZOU, S. CHEN, Y. XU, B. SHEN, Y. ZHANG, L. YE, Microstructural evolution and deformation mechanisms of superplastic aluminium alloys: A review, Transactions of Nonferrous Metals Society of China 34 (2024) 3069–3092.

DOI: 10.1016/S1003-6326(24)66596-9

Google Scholar

[12] E.K. Kweitsu, D.K. Sarkar, A.Y. Algendy, X.-G. Chen, J. Veilleux, N. Bombardier, Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys, Materials 17 (2024) 5492.

DOI: 10.3390/ma17225492

Google Scholar

[13] H. Naresh, S. Prashantha, K. Ramesha, N. Santhosh, M.C. Manjunatha, Investigation into the Mechanical, Fatigue and Superplastic Characteristics of Shape Memory Alloys (SMA) in Cu–Al–Mn, Cu–Al–Be–Mn, and Cu–Al–Fe–Mn Compositions and Their Composite Variants, in: 2024: p.407–422.

DOI: 10.1007/978-981-97-7071-7_30

Google Scholar

[14] V.N. Chuvil'deev, M.Y. Gryaznov, S. V Shotin, A. V Nokhrin, V.I. Kopylov, M.K. Chegurov, A.A. Bobrov, I.S. Shadrina, M.M. Vostokov, Investigation of superplasticity of ultrafine-grained copper alloys obtained using the ECAP, J Phys Conf Ser 1347 (2019) 012063.

DOI: 10.1088/1742-6596/1347/1/012063

Google Scholar

[15] A. V. Mikhaylovskaya, O.A. Yakovtseva, N.Y. Tabachkova, T.G. Langdon, Formation of ultrafine grains and twins in the β-phase during superplastic deformation of two-phase brasses, Scr Mater 218 (2022).

DOI: 10.1016/j.scriptamat.2022.114804

Google Scholar

[16] B.P. Kashyap, S. Verma, P. Mandlik, N. Kumar, S.P. Toppo, Effect of test temperature on tensile properties of α / β brass containing lead, Materials Science and Technology 22 (2006) 363–367.

DOI: 10.1179/026708306X81414

Google Scholar

[17] K. Neishi, Z. Horita, T.G. Langdon, Achieving superplasticity in a Cu–40%Zn alloy through severe plastic deformation, Scr Mater 45 (2001) 965–970.

DOI: 10.1016/S1359-6462(01)01119-8

Google Scholar

[18] C. Lei, H. Liu, X. Deng, X. Li, Z. Wang, Excellent low temperature superplasticity and its deformation mechanism in nano/ultrafine grained Fe–17Cr–6Ni stainless steel, Journal of Materials Research and Technology 33 (2024) 61–69.

DOI: 10.1016/j.jmrt.2024.09.037

Google Scholar

[19] H.-B. Jeong, J.-Y. Lee, J.-C. Jin, H.-J. Cho, Y.-K. Lee, Effect of Si content on low-temperature superplasticity in Fe–10Mn steel, Journal of Materials Research and Technology 33 (2024) 16–27.

DOI: 10.1016/j.jmrt.2024.09.027

Google Scholar

[20] J. Liu, Q. Li, H. Gui, P. Zhang, S. Li, C. Zhang, H. Liu, C. Shen, P. Zhang, Influence of Solid Solution Treatment on Microstructure and Mechanical Properties of 20CrNiMo/Incoloy 825 Composite Materials, Materials 17 (2024) 5588.

DOI: 10.3390/ma17225588

Google Scholar

[21] H. Masuda, E. Sato, Diffusional and dislocation accommodation mechanisms in superplastic materials, Acta Mater 197 (2020) 235–252.

DOI: 10.1016/j.actamat.2020.07.042

Google Scholar

[22] M. Konieczny, Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites, AIMS Mater Sci 7 (2020) 312–322.

DOI: 10.3934/matersci.2020.3.312

Google Scholar

[23] O.A. Bazyleva, V.A. Valitov, E.G. Arginbaeva, B.S. Lomberg, A.N. Raevskikh, Permanent Joint Stability of Heat-Resistant Deformable Nickel and Cast Intermetallic Alloys Obtained under Superplasticity Conditions: Part 1, Inorganic Materials: Applied Research 13 (2022) 318–325.

DOI: 10.1134/S207511332202006X

Google Scholar

[24] S. Sivalingam, G. Kumaresan, P. Ganesh, M.T. Azhagan, Superplastic Formability and Cavitation Analysis of AA7075 Matrix Composite Reinforced with B4C Particles Produced by Stir Casting, International Journal of Metalcasting 17 (2023) 2917–2927.

DOI: 10.1007/s40962-022-00932-4

Google Scholar

[25] A.H. Chokshi, Grain Boundary Processes in Strengthening, Weakening, and Superplasticity, Adv Eng Mater 22 (2020).

DOI: 10.1002/adem.201900748

Google Scholar

[26] O.A. Yakovtseva, A.A. Kishchik, A. V. Irzhak, A. V. Mikhaylovskaya, Superplastic behavior and deformation mechanisms of Al-Mg-based alloy processed by isothermal multidirectional forging, Mater Lett 377 (2024) 137538.

DOI: 10.1016/j.matlet.2024.137538

Google Scholar

[27] G. Zou, L. Ye, J. Li, Z. Shen, Microstructure evolution and deformation mechanisms of a banded-grained 2A97 Al–Cu–Li alloy during superplastic deformation, Materials Science and Engineering: A 876 (2023) 145178.

DOI: 10.1016/j.msea.2023.145178

Google Scholar

[28] E.K. Kweitsu, D.K. Sarkar, X.-G. Chen, A Short Review on Superplasticity of Aluminum Alloys, in: The 15th International Aluminium Conference, MDPI, Basel Switzerland, 2023: p.43.

DOI: 10.3390/engproc2023043043

Google Scholar

[29] G. Sha, L. Yao, X. Liao, S.P. Ringer, Z. Chao Duan, T.G. Langdon, Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy, Ultramicroscopy 111 (2011) 500–505.

DOI: 10.1016/j.ultramic.2010.11.013

Google Scholar

[30] X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy, Acta Mater 72 (2014) 125–136.

DOI: 10.1016/j.actamat.2014.03.033

Google Scholar

[31] K. Sotoudeh, P.S. Bate, Diffusion creep and superplasticity in aluminium alloys, Acta Mater 58 (2010) 1909–1920.

DOI: 10.1016/j.actamat.2009.11.034

Google Scholar

[32] A.V. Mikhaylovskaya, O.A. Yakovtseva, A.V. Irzhak, The role of grain boundary sliding and intragranular deformation mechanisms for a steady stage of superplastic flow for Al–Mg-based alloys, Materials Science and Engineering: A 833 (2022) 142524.

DOI: 10.1016/j.msea.2021.142524

Google Scholar

[33] F.C. Liu, Z.Y. Ma, Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys, Scr Mater 62 (2010) 125–128.

DOI: 10.1016/j.scriptamat.2009.10.010

Google Scholar

[34] I.C. Hsiao, J.C. Huang, Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy, Metallurgical and Materials Transactions A 33 (2002) 1373–1384.

DOI: 10.1007/s11661-002-0062-0

Google Scholar

[35] A. Mikhaylovskaya, O. Yakovtseva, M. Sitkina, A.D. Kotov, Grain-boundary and intragranular deformation in ultrafine-grained aluminum-based alloy at high strain rate, Mater Lett 276 (2020) 128242.

DOI: 10.1016/j.matlet.2020.128242

Google Scholar

[36] A. Sergueeva, A. Mukherjee, Superplastic deformation in nanocrystalline metals and alloys, in: Nanostructured Metals and Alloys, Elsevier, 2011: p.542–593.

DOI: 10.1533/9780857091123.3.542

Google Scholar

[37] D.M. Hulbert, D. Jiang, J.D. Kuntz, Y. Kodera, A.K. Mukherjee, A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic, Scr Mater 56 (2007) 1103–1106.

DOI: 10.1016/j.scriptamat.2007.02.003

Google Scholar

[38] H. Wu, J. Jiang, Q. Xie, Y. Yuan, A. Ma, Enhanced superplasticity of ultrafine-grained WEQ612 magnesium alloy via the coupling effect of grain boundary segregation and dense precipitation, Materials Science and Engineering: A 897 (2024) 146337.

DOI: 10.1016/j.msea.2024.146337

Google Scholar

[39] S. Wang, M. Zha, H. Jia, Y. Yang, D. Wang, C. Wang, Y. Gao, H.-Y. Wang, A review of superplastic magnesium alloys: Focusing on alloying strategy, grain structure control and deformation mechanisms, J Mater Sci Technol 211 (2025) 303–319.

DOI: 10.1016/j.jmst.2024.06.002

Google Scholar

[40] D. Xu, X. Liu, H. Wu, D. An, Q. Hu, X. Li, J. Chen, Superplastic deformation mechanisms of coarse-grained rolled Mg-4Y-3RE magnesium alloy, Journal of Magnesium and Alloys (2024).

DOI: 10.1016/j.jma.2024.11.006

Google Scholar

[41] S. Cui, I.-H. Jung, Thermodynamic Modeling of the Al-Cr-Mn Ternary System, Metallurgical and Materials Transactions A 48 (2017) 1383–1401.

DOI: 10.1007/s11661-016-3894-8

Google Scholar

[42] S. Pan, Z. Wang, C. Li, D. Wan, X. Chen, K. Chen, Y. Li, Achieving superior dispersion-strengthening effect in an AA5xxx Al-Mg-Mn alloy by mico-alloying, Mater Des 226 (2023) 111647.

DOI: 10.1016/j.matdes.2023.111647

Google Scholar

[43] Y. ZHOU, N. TIAN, W. LIU, Y. ZENG, G. WANG, S. HAN, G. ZHAO, G. QIN, Mechanism of heterogeneous distribution of Cr-containing dispersoids in DC casting 7475 aluminum alloy, Transactions of Nonferrous Metals Society of China 32 (2022) 1416–1427.

DOI: 10.1016/S1003-6326(22)65883-7

Google Scholar

[44] T. Radetić, M. Popović, E. Romhanji, Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment, Mater Charact 65 (2012) 16–27.

DOI: 10.1016/j.matchar.2011.12.006

Google Scholar

[45] B. Trink, I. Weißensteiner, P.J. Uggowitzer, K. Strobel, A. Hofer-Roblyek, S. Pogatscher, Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys, Acta Mater 257 (2023) 119160.

DOI: 10.1016/j.actamat.2023.119160

Google Scholar

[46] A.O. Mosleh, O.A. Yakovtseva, A.A. Kishchik, A.D. Kotov, E.B. Moustafa, A. V. Mikhaylovskaya, Effect of Coarse Eutectic-Originated Particles on the Microstructure and Properties of the Friction Stir-Processed Al-Mg-Zr-Sc-Based Alloys, JOM 75 (2023) 2989–3000.

DOI: 10.1007/s11837-023-05712-x

Google Scholar

[47] L.P. Troeger, E.A. Starke, Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy, Materials Science and Engineering: A 293 (2000) 19–29.

DOI: 10.1016/S0921-5093(00)01235-1

Google Scholar

[48] V.S. Zolotorevsky, N.A. Belov, M. V. Glazoff, Casting Aluminum Alloys, 2007.

DOI: 10.1016/B978-0-08-045370-5.X5001-9

Google Scholar

[49] A.V. Mikhaylovskaya, O.A. Yakovtseva, M.N. Sitkina, A.D. Kotov, A.V. Irzhak, S.V. Krymskiy, V.K. Portnoy, Comparison between superplastic deformation mechanisms at primary and steady stages of the fine grain AA7475 aluminium alloy, Materials Science and Engineering: A 718 (2018) 277–286.

DOI: 10.1016/j.msea.2018.01.102

Google Scholar

[50] J.J. Blandin, B. Hong, A. Varloteaux, M. Suery, G. L'Esperance, Effect of the nature of grain boundary regions on cavitation of a superplastically deformed aluminium alloy, Acta Mater 44 (1996) 2317–2326.

DOI: 10.1016/1359-6454(95)00340-1

Google Scholar

[51] J.U. Rakhmonov, R. Michi, S. Bahl, O. Rahman, C. Frederick, A.K. Ziabari, D.C. Dunand, R. Dehoff, A. Plotkowski, A. Shyam, Creep deformation and cavitation in an additively manufactured Al-8.6Cu-0.4Mn-0.9Zr (wt%) alloy, Addit Manuf 84 (2024) 104097.

DOI: 10.1016/j.addma.2024.104097

Google Scholar

[52] M.A. Rust, R.I. Todd, Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity, Acta Mater 59 (2011) 5159–5170.

DOI: 10.1016/j.actamat.2011.04.051

Google Scholar

[53] I.I. Novikov, V.K. Portnoy, V.S. Levchenko, Investigation of structural changes during superplastic deformation of Zn-22% Al alloy by replica locating technique, Acta Metallurgica 29 (1981) 1077–1090.

DOI: 10.1016/0001-6160(81)90059-6

Google Scholar

[54] A.V. Mikhaylovskaya, O.A. Yakovtseva, I.S. Golovin, A.V. Pozdniakov, V.K. Portnoy, Superplastic deformation mechanisms in fine-grained Al–Mg based alloys, Materials Science and Engineering: A 627 (2015) 31–41.

DOI: 10.1016/j.msea.2014.12.099

Google Scholar