[1]
M. Kawasaki, T.G. Langdon, Review: Achieving superplasticity in metals processed by high-pressure torsion, in: J Mater Sci, 2014.
DOI: 10.1007/s10853-014-8204-5
Google Scholar
[2]
T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, J Mater Sci (2009).
DOI: 10.1007/s10853-009-3780-5
Google Scholar
[3]
F.A. Mohamed, Creep and Superplasticity: Evolution and Rationalization, Adv Eng Mater 22 (2020).
DOI: 10.1002/adem.201900532
Google Scholar
[4]
H. Yoshida, M. Kumagai, S. ichi Matsuda, Superplasticity of aluminium alloys, Sumitomo Keikinzoku Giho/Sumitomo Light Metal Technical Reports (1990).
Google Scholar
[5]
E. Alabort, P. Kontis, D. Barba, K. Dragnevski, R.C. Reed, On the mechanisms of superplasticity in Ti-6Al-4V, Acta Mater (2016). https://doi.org/10.1016/j.actamat. 2015.12.003.
DOI: 10.1016/j.actamat.2015.12.003
Google Scholar
[6]
A.O. Mosleh, A.V. Mikhaylovskaya, A.D. Kotov, J.S. Kwame, S.A. Aksenov, Superplasticity of Ti-6Al-4V titanium alloy: Microstructure evolution and constitutive modelling, Materials 12 (2019).
DOI: 10.3390/ma12111756
Google Scholar
[7]
W. Zhang, H. Ding, M. Cai, W. Yang, J. Li, Low-temperature superplastic deformation mechanism in Ti–6Al–4V alloy processed by friction stir processing, Materials Science and Engineering A 764 (2019) 138261.
DOI: 10.1016/j.msea.2019.138261
Google Scholar
[8]
A. V. Mikhaylovskaya, O.A. Yakovtseva, A.G. Mochugovskiy, J. Cifre, I.S. Golovin, Influence of minor Zn additions on grain boundary anelasticity, grain boundary sliding, and superplasticity of Al-Mg-based alloys, J Alloys Compd 926 (2022) 166785.
DOI: 10.1016/j.jallcom.2022.166785
Google Scholar
[9]
X.G. Wang, Q.S. Li, R.R. Wu, X.Y. Zhang, L. Ma, A Review on Superplastic Formation Behavior of Al Alloys, Advances in Materials Science and Engineering 2018 (2018).
DOI: 10.1155/2018/7606140
Google Scholar
[10]
E. V. Bobruk, M.Yu. Murashkin, I.A. Ramazanov, V.U. Kazykhanov, R.Z. Valiev, Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains, Materials 16 (2023) 727.
DOI: 10.3390/ma16020727
Google Scholar
[11]
G. ZOU, S. CHEN, Y. XU, B. SHEN, Y. ZHANG, L. YE, Microstructural evolution and deformation mechanisms of superplastic aluminium alloys: A review, Transactions of Nonferrous Metals Society of China 34 (2024) 3069–3092.
DOI: 10.1016/S1003-6326(24)66596-9
Google Scholar
[12]
E.K. Kweitsu, D.K. Sarkar, A.Y. Algendy, X.-G. Chen, J. Veilleux, N. Bombardier, Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys, Materials 17 (2024) 5492.
DOI: 10.3390/ma17225492
Google Scholar
[13]
H. Naresh, S. Prashantha, K. Ramesha, N. Santhosh, M.C. Manjunatha, Investigation into the Mechanical, Fatigue and Superplastic Characteristics of Shape Memory Alloys (SMA) in Cu–Al–Mn, Cu–Al–Be–Mn, and Cu–Al–Fe–Mn Compositions and Their Composite Variants, in: 2024: p.407–422.
DOI: 10.1007/978-981-97-7071-7_30
Google Scholar
[14]
V.N. Chuvil'deev, M.Y. Gryaznov, S. V Shotin, A. V Nokhrin, V.I. Kopylov, M.K. Chegurov, A.A. Bobrov, I.S. Shadrina, M.M. Vostokov, Investigation of superplasticity of ultrafine-grained copper alloys obtained using the ECAP, J Phys Conf Ser 1347 (2019) 012063.
DOI: 10.1088/1742-6596/1347/1/012063
Google Scholar
[15]
A. V. Mikhaylovskaya, O.A. Yakovtseva, N.Y. Tabachkova, T.G. Langdon, Formation of ultrafine grains and twins in the β-phase during superplastic deformation of two-phase brasses, Scr Mater 218 (2022).
DOI: 10.1016/j.scriptamat.2022.114804
Google Scholar
[16]
B.P. Kashyap, S. Verma, P. Mandlik, N. Kumar, S.P. Toppo, Effect of test temperature on tensile properties of α / β brass containing lead, Materials Science and Technology 22 (2006) 363–367.
DOI: 10.1179/026708306X81414
Google Scholar
[17]
K. Neishi, Z. Horita, T.G. Langdon, Achieving superplasticity in a Cu–40%Zn alloy through severe plastic deformation, Scr Mater 45 (2001) 965–970.
DOI: 10.1016/S1359-6462(01)01119-8
Google Scholar
[18]
C. Lei, H. Liu, X. Deng, X. Li, Z. Wang, Excellent low temperature superplasticity and its deformation mechanism in nano/ultrafine grained Fe–17Cr–6Ni stainless steel, Journal of Materials Research and Technology 33 (2024) 61–69.
DOI: 10.1016/j.jmrt.2024.09.037
Google Scholar
[19]
H.-B. Jeong, J.-Y. Lee, J.-C. Jin, H.-J. Cho, Y.-K. Lee, Effect of Si content on low-temperature superplasticity in Fe–10Mn steel, Journal of Materials Research and Technology 33 (2024) 16–27.
DOI: 10.1016/j.jmrt.2024.09.027
Google Scholar
[20]
J. Liu, Q. Li, H. Gui, P. Zhang, S. Li, C. Zhang, H. Liu, C. Shen, P. Zhang, Influence of Solid Solution Treatment on Microstructure and Mechanical Properties of 20CrNiMo/Incoloy 825 Composite Materials, Materials 17 (2024) 5588.
DOI: 10.3390/ma17225588
Google Scholar
[21]
H. Masuda, E. Sato, Diffusional and dislocation accommodation mechanisms in superplastic materials, Acta Mater 197 (2020) 235–252.
DOI: 10.1016/j.actamat.2020.07.042
Google Scholar
[22]
M. Konieczny, Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites, AIMS Mater Sci 7 (2020) 312–322.
DOI: 10.3934/matersci.2020.3.312
Google Scholar
[23]
O.A. Bazyleva, V.A. Valitov, E.G. Arginbaeva, B.S. Lomberg, A.N. Raevskikh, Permanent Joint Stability of Heat-Resistant Deformable Nickel and Cast Intermetallic Alloys Obtained under Superplasticity Conditions: Part 1, Inorganic Materials: Applied Research 13 (2022) 318–325.
DOI: 10.1134/S207511332202006X
Google Scholar
[24]
S. Sivalingam, G. Kumaresan, P. Ganesh, M.T. Azhagan, Superplastic Formability and Cavitation Analysis of AA7075 Matrix Composite Reinforced with B4C Particles Produced by Stir Casting, International Journal of Metalcasting 17 (2023) 2917–2927.
DOI: 10.1007/s40962-022-00932-4
Google Scholar
[25]
A.H. Chokshi, Grain Boundary Processes in Strengthening, Weakening, and Superplasticity, Adv Eng Mater 22 (2020).
DOI: 10.1002/adem.201900748
Google Scholar
[26]
O.A. Yakovtseva, A.A. Kishchik, A. V. Irzhak, A. V. Mikhaylovskaya, Superplastic behavior and deformation mechanisms of Al-Mg-based alloy processed by isothermal multidirectional forging, Mater Lett 377 (2024) 137538.
DOI: 10.1016/j.matlet.2024.137538
Google Scholar
[27]
G. Zou, L. Ye, J. Li, Z. Shen, Microstructure evolution and deformation mechanisms of a banded-grained 2A97 Al–Cu–Li alloy during superplastic deformation, Materials Science and Engineering: A 876 (2023) 145178.
DOI: 10.1016/j.msea.2023.145178
Google Scholar
[28]
E.K. Kweitsu, D.K. Sarkar, X.-G. Chen, A Short Review on Superplasticity of Aluminum Alloys, in: The 15th International Aluminium Conference, MDPI, Basel Switzerland, 2023: p.43.
DOI: 10.3390/engproc2023043043
Google Scholar
[29]
G. Sha, L. Yao, X. Liao, S.P. Ringer, Z. Chao Duan, T.G. Langdon, Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy, Ultramicroscopy 111 (2011) 500–505.
DOI: 10.1016/j.ultramic.2010.11.013
Google Scholar
[30]
X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy, Acta Mater 72 (2014) 125–136.
DOI: 10.1016/j.actamat.2014.03.033
Google Scholar
[31]
K. Sotoudeh, P.S. Bate, Diffusion creep and superplasticity in aluminium alloys, Acta Mater 58 (2010) 1909–1920.
DOI: 10.1016/j.actamat.2009.11.034
Google Scholar
[32]
A.V. Mikhaylovskaya, O.A. Yakovtseva, A.V. Irzhak, The role of grain boundary sliding and intragranular deformation mechanisms for a steady stage of superplastic flow for Al–Mg-based alloys, Materials Science and Engineering: A 833 (2022) 142524.
DOI: 10.1016/j.msea.2021.142524
Google Scholar
[33]
F.C. Liu, Z.Y. Ma, Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys, Scr Mater 62 (2010) 125–128.
DOI: 10.1016/j.scriptamat.2009.10.010
Google Scholar
[34]
I.C. Hsiao, J.C. Huang, Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy, Metallurgical and Materials Transactions A 33 (2002) 1373–1384.
DOI: 10.1007/s11661-002-0062-0
Google Scholar
[35]
A. Mikhaylovskaya, O. Yakovtseva, M. Sitkina, A.D. Kotov, Grain-boundary and intragranular deformation in ultrafine-grained aluminum-based alloy at high strain rate, Mater Lett 276 (2020) 128242.
DOI: 10.1016/j.matlet.2020.128242
Google Scholar
[36]
A. Sergueeva, A. Mukherjee, Superplastic deformation in nanocrystalline metals and alloys, in: Nanostructured Metals and Alloys, Elsevier, 2011: p.542–593.
DOI: 10.1533/9780857091123.3.542
Google Scholar
[37]
D.M. Hulbert, D. Jiang, J.D. Kuntz, Y. Kodera, A.K. Mukherjee, A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic, Scr Mater 56 (2007) 1103–1106.
DOI: 10.1016/j.scriptamat.2007.02.003
Google Scholar
[38]
H. Wu, J. Jiang, Q. Xie, Y. Yuan, A. Ma, Enhanced superplasticity of ultrafine-grained WEQ612 magnesium alloy via the coupling effect of grain boundary segregation and dense precipitation, Materials Science and Engineering: A 897 (2024) 146337.
DOI: 10.1016/j.msea.2024.146337
Google Scholar
[39]
S. Wang, M. Zha, H. Jia, Y. Yang, D. Wang, C. Wang, Y. Gao, H.-Y. Wang, A review of superplastic magnesium alloys: Focusing on alloying strategy, grain structure control and deformation mechanisms, J Mater Sci Technol 211 (2025) 303–319.
DOI: 10.1016/j.jmst.2024.06.002
Google Scholar
[40]
D. Xu, X. Liu, H. Wu, D. An, Q. Hu, X. Li, J. Chen, Superplastic deformation mechanisms of coarse-grained rolled Mg-4Y-3RE magnesium alloy, Journal of Magnesium and Alloys (2024).
DOI: 10.1016/j.jma.2024.11.006
Google Scholar
[41]
S. Cui, I.-H. Jung, Thermodynamic Modeling of the Al-Cr-Mn Ternary System, Metallurgical and Materials Transactions A 48 (2017) 1383–1401.
DOI: 10.1007/s11661-016-3894-8
Google Scholar
[42]
S. Pan, Z. Wang, C. Li, D. Wan, X. Chen, K. Chen, Y. Li, Achieving superior dispersion-strengthening effect in an AA5xxx Al-Mg-Mn alloy by mico-alloying, Mater Des 226 (2023) 111647.
DOI: 10.1016/j.matdes.2023.111647
Google Scholar
[43]
Y. ZHOU, N. TIAN, W. LIU, Y. ZENG, G. WANG, S. HAN, G. ZHAO, G. QIN, Mechanism of heterogeneous distribution of Cr-containing dispersoids in DC casting 7475 aluminum alloy, Transactions of Nonferrous Metals Society of China 32 (2022) 1416–1427.
DOI: 10.1016/S1003-6326(22)65883-7
Google Scholar
[44]
T. Radetić, M. Popović, E. Romhanji, Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment, Mater Charact 65 (2012) 16–27.
DOI: 10.1016/j.matchar.2011.12.006
Google Scholar
[45]
B. Trink, I. Weißensteiner, P.J. Uggowitzer, K. Strobel, A. Hofer-Roblyek, S. Pogatscher, Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys, Acta Mater 257 (2023) 119160.
DOI: 10.1016/j.actamat.2023.119160
Google Scholar
[46]
A.O. Mosleh, O.A. Yakovtseva, A.A. Kishchik, A.D. Kotov, E.B. Moustafa, A. V. Mikhaylovskaya, Effect of Coarse Eutectic-Originated Particles on the Microstructure and Properties of the Friction Stir-Processed Al-Mg-Zr-Sc-Based Alloys, JOM 75 (2023) 2989–3000.
DOI: 10.1007/s11837-023-05712-x
Google Scholar
[47]
L.P. Troeger, E.A. Starke, Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy, Materials Science and Engineering: A 293 (2000) 19–29.
DOI: 10.1016/S0921-5093(00)01235-1
Google Scholar
[48]
V.S. Zolotorevsky, N.A. Belov, M. V. Glazoff, Casting Aluminum Alloys, 2007.
DOI: 10.1016/B978-0-08-045370-5.X5001-9
Google Scholar
[49]
A.V. Mikhaylovskaya, O.A. Yakovtseva, M.N. Sitkina, A.D. Kotov, A.V. Irzhak, S.V. Krymskiy, V.K. Portnoy, Comparison between superplastic deformation mechanisms at primary and steady stages of the fine grain AA7475 aluminium alloy, Materials Science and Engineering: A 718 (2018) 277–286.
DOI: 10.1016/j.msea.2018.01.102
Google Scholar
[50]
J.J. Blandin, B. Hong, A. Varloteaux, M. Suery, G. L'Esperance, Effect of the nature of grain boundary regions on cavitation of a superplastically deformed aluminium alloy, Acta Mater 44 (1996) 2317–2326.
DOI: 10.1016/1359-6454(95)00340-1
Google Scholar
[51]
J.U. Rakhmonov, R. Michi, S. Bahl, O. Rahman, C. Frederick, A.K. Ziabari, D.C. Dunand, R. Dehoff, A. Plotkowski, A. Shyam, Creep deformation and cavitation in an additively manufactured Al-8.6Cu-0.4Mn-0.9Zr (wt%) alloy, Addit Manuf 84 (2024) 104097.
DOI: 10.1016/j.addma.2024.104097
Google Scholar
[52]
M.A. Rust, R.I. Todd, Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity, Acta Mater 59 (2011) 5159–5170.
DOI: 10.1016/j.actamat.2011.04.051
Google Scholar
[53]
I.I. Novikov, V.K. Portnoy, V.S. Levchenko, Investigation of structural changes during superplastic deformation of Zn-22% Al alloy by replica locating technique, Acta Metallurgica 29 (1981) 1077–1090.
DOI: 10.1016/0001-6160(81)90059-6
Google Scholar
[54]
A.V. Mikhaylovskaya, O.A. Yakovtseva, I.S. Golovin, A.V. Pozdniakov, V.K. Portnoy, Superplastic deformation mechanisms in fine-grained Al–Mg based alloys, Materials Science and Engineering: A 627 (2015) 31–41.
DOI: 10.1016/j.msea.2014.12.099
Google Scholar