[1]
IEA. (2023). World Energy Outlook 2023. International Energy Agency.
Google Scholar
[2]
REN21. (2023). Renewables 2023 Global Status Report. REN21 Secretariat, Paris.
Google Scholar
[3]
Zhang, Y., et al. (2023). "Optimisation strategies for thermal energy storage systems in renewable energy applications: A review." Renewable and Sustainable Energy Reviews, 176, 113232.
Google Scholar
[4]
Hasan, A., et al. (2023). "Recent progress in solar thermal energy storage technologies." Applied Energy, 345, 120296.
Google Scholar
[5]
Sharma, R. K., et al. (2022). "Latent heat thermal energy storage systems for solar applications: Recent trends and challenges." Energy Reports, 8, 3371–3385.
Google Scholar
[6]
Khodadadi, J. M., & Hosseinizadeh, S. F. (2022). "Thermal conductivity enhancement in phase change materials for thermal energy storage: A review." Renewable Energy, 201, 68–90.
DOI: 10.1016/j.rser.2010.08.007
Google Scholar
[7]
Mahdi, J. M., et al. (2023). "Numerical evaluation of paraffin wax melting in a shell-and-tube thermal storage unit with helical fins." Applied Thermal Engineering, 222, 119936.
Google Scholar
[8]
Al-Abidi, A. A., et al. (2022). "Review of finned tube heat exchangers in PCM-based thermal energy storage systems." Renewable and Sustainable Energy Reviews, 160, 112296.
Google Scholar
[9]
Li, W., et al. (2023). "Thermal performance enhancement of multiple tubes latent heat thermal energy storage system using sinusoidal wavy fins and tubes geometry." International Journal of Heat and Mass Transfer, 208, 124114.
DOI: 10.1016/j.applthermaleng.2024.122750
Google Scholar
[10]
Eltaweel, A., et al. (2024). "The effect of fin geometry on the thermal performance of a conical latent heat thermal energy storage system." Case Studies in Thermal Engineering, 47, 103253.
Google Scholar
[11]
Al-Abidi, A. A., Mat, S., Sopian, K., Sulaiman, M. Y., & Mohammad, A. T. (2014). Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy and Buildings, 68 (PARTA), 33–41. https://doi.org/10.1016/j.enbuild. 2013.09.007
DOI: 10.1016/j.enbuild.2013.09.007
Google Scholar
[12]
Mahdi, J. M., et al. (2023). Numerical evaluation of paraffin wax melting in a shell-and-tube thermal storage unit with helical fins. Applied Thermal Engineering, 222, 119936.
Google Scholar
[13]
Al-Abidi, A. A., et al. (2022). Review of finned tube heat exchangers in PCM-based thermal energy storage systems. Renewable and Sustainable Energy Reviews, 160, 112296.
Google Scholar
[14]
Liu, X., et al. (2023). Effect of eccentricity and V-shaped fins on the heat transfer enhancement of latent heat thermal energy storage units. Case Studies in Thermal Engineering, 42, 103039.
Google Scholar
[15]
Khalid, M., et al. (2022). Evaluation of T-shaped fins with a novel layout for improved melting of phase change materials in vertical triple-tube heat exchangers. Frontiers in Energy Research, 10, 947391.
Google Scholar
[16]
Rahman, M. M., et al. (2024). Investigation of the impact of triangular shape fins to enhancing the melting performance in a triplex-tube thermal energy storage system. International Journal of Heat and Mass Transfer, 213, 124589.
Google Scholar
[17]
Mostafa, A. M., et al. (2021). Impact of innovative fin combination of triangular and rectangular fins on the thermal performance of a latent heat thermal energy storage system. Case Studies in Thermal Engineering, 27, 101268.
DOI: 10.1016/j.csite.2021.101339
Google Scholar
[18]
Eltaweel, A. A., et al. (2024). Thermal performance of composite fin designs for PCM melting in cylindrical heat exchangers. Energy Conversion and Management, 293, 117631.
Google Scholar