[1]
S. Yadav, S. Rajoba, R. Kalubarme, V. Parale and L. Jadhav, "Solution combustion synthesis of NaFePO4 and its electrochemical performance", Chinese Journal of Physics, vol. 69, pp.134-142, 2021. Available:
DOI: 10.1016/j.cjph.2020.11.020
Google Scholar
[2]
D. Wang, Y. Wu, J. Lv, R. Wang and S. Xu, "Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 583, p.123957, 2019. Available:
DOI: 10.1016/j.colsurfa.2019.123957
Google Scholar
[3]
C. Heubner, S. Heiden, M. Schneider and A. Michaelis, "In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries", Electrochimica Acta, vol. 233, pp.78-84, 2017. Available:
DOI: 10.1016/j.electacta.2017.02.107
Google Scholar
[4]
D.F. Puspita, "Pengaruh Pemanasan Pada Proses Pelarutan Binder Terhadap Kinerja Katoda Pada Sel Baterai Ion-litium," Jurnal Teknologi Bahan dan Barang Teknik, vol. 7, no. 1, p.23, 2017.
DOI: 10.37209/jtbbt.v7i1.91
Google Scholar
[5]
D.L. Wood, J. D. Quass, J. Li, S. Ahmed, D. Ventola, and C. Daniel, "Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP," Drying Technology, vol. 36, no. 2, p.234–244, Aug. 2017.
DOI: 10.1080/07373937.2017.1319855
Google Scholar
[6]
J. Li, Y. Lu, T. Yang, D. Ge, D. L. Wood, and Z. Li, "Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes—A Green and Sustainable Manufacturing System," iScience, vol. 23, no. 5, p.101081, May 2020.
DOI: 10.1016/j.isci.2020.101081
Google Scholar
[7]
M. Kuenzel et al., "Deriving Structure‐Performance Relations of Chemically Modified Chitosan Binders for Sustainable High‐Voltage LiNi0.5Mn1.5O4 Cathodes," Batteries & Supercaps, vol. 3, no. 2, p.155–164, Nov. 2019.
DOI: 10.1002/batt.201900140
Google Scholar
[8]
K. Prasanna, T. Subburaj, Y. N. Jo, W. J. Lee, and C. W. Lee, "Environment-Friendly Cathodes Using Biopolymer Chitosan with Enhanced Electrochemical Behavior for Use in Lithium Ion Batteries," ACS Applied Materials & Interfaces, vol. 7, no. 15, p.7884–7890, Apr. 2015.
DOI: 10.1021/am5084094
Google Scholar
[9]
S. Chennakrishnan, V. Thangamuthu, A. Subramaniyam, V. Venkatachalam, M. Venugopal and R. Marudhan, "Synthesis and characterization of Li2MnO3 nanoparticles using sol-gel technique for lithium ion battery", Materials Science-Poland, vol. 38, no. 2, pp.312-319, 2020. Available:
DOI: 10.2478/msp-2020-0026
Google Scholar
[10]
Y. Liu, Y. Zhou, J. Zhang, Y. Xia, T. Chen, and S. Zhang, "Monoclinic Phase Na3Fe2(PO4)3: Synthesis, Structure, and Electrochemical Performance as Cathode Material in Sodium-Ion Batteries," ACS Sustainable Chemistry & Engineering, vol. 5, no. 2, p.1306–1314, Dec. 2016
DOI: 10.1021/acssuschemeng.6b01536
Google Scholar
[11]
K. Trad et al., "A Layered Iron(III) Phosphate Phase, Na3Fe3(PO4)4: Synthesis, Structure, and Electrochemical Properties as Positive Electrode in Sodium Batteries," The Journal of Physical Chemistry C, vol. 114, no. 21, p.10034–10044, May 2010.
DOI: 10.1021/jp100751b
Google Scholar
[12]
T. Kim et al., "Applications of Voltammetry in Lithium Ion Battery Research," Journal of Electrochemical Science and Technology, vol. 11, no. 1, p.14–25, Feb. 2020.
DOI: 10.33961/jecst.2019.00619
Google Scholar
[13]
M. Ji et al., "Preparation and electrochemical performance of La3+ and F− co-doped Li4Ti5O12 anode material for lithium-ion batteries," Journal of Power Sources, vol. 263, p.296–303, Oct. 2014.
DOI: 10.1016/j.jpowsour.2014.04.051
Google Scholar