Corn Starch-Sodium Acetat Composite Material from Industrial Waste Fly Ash for Solid Electrolyte Polymer Ionic Conductivity in Supercapacitor Application

Article Preview

Abstract:

Solid polymer electrolyte (SPE) is a safer alternative to use than liquid electrolytes. This research focuses on the highest conductivity with fly ash filler in solid polymer electrolyte (SPE) based on corn starch, using the solution casting method. The crystallinity and interaction between fly ash and Na+ ions of solid polymer electrolyte were seen by X-ray Diffraction (XRD), then Fourier Transform Infra-Red (FTIR), showing a shift in functional groups due to the interaction of SiO2 in fly ash and Na+ ions, and surface morphology forms was observed by Scanning Electron Microscopy (SEM). Ionic conductivity was analyzed by Electrochemical impedance Spectrometry (EIS). solid polymer electrolyte with fly ash showed the highest ionic conductivity 2,51 x 10-4 S/cm, at room temperature with addition fly ash 10%. the highest conductivity result was corresponding with amorphous peak with same concetration on XRD. SPE based on corn starch with Fly ash filler has potential to be used as a solid polymer electrolyte in supercapacitors.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Yulianti, E, Saputri R. D., Sudaryanto, Jodi, H., & Salam, R. (2013.) Pembuatan Bahan polimer Elektrolit Padat Berbasis Nanokomposit Kitosan Montmorillonite untuk Aplikasi Baterai, Jurnal Kimia Kemasan 35 (2) ; 77-83.

DOI: 10.24817/jkk.v35i2.1877

Google Scholar

[2] Ni'mah, Y. L., Taufik, M. F., Maezah, A., & Kurniawan, F. (2018). Increasing the ionic conductivity of solid state polymer electrolyte using fly ash as a filler. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 443-447.

DOI: 10.11113/mjfas.v14n4.970

Google Scholar

[3] Amran, N. N. A., Manan, N. S. A., & Kadir, M. F. Z. (2016). The effect of LiCF 3 SO 3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics, 22(9), 1647-1658.

DOI: 10.1007/s11581-016-1684-3

Google Scholar

[4] Awang, F. F., Kamarudin, K. H., & Hassan, M. F. (2020). Employing an Electrochemical Impedance Spectroscopy Technique to Estimate the Ion Transport Parameters in Corn Starch Based Solid Polymer Electrolyte. International Journal of Advanced Research in Engineering Innovation, 2(3), 78-88.

Google Scholar

[5] Awang, F. F., Hassan, M. F., & Kamarudin, K. H. (2021). Corn starch doped with sodium iodate as solid polymer electrolytes for energy storage applications.

DOI: 10.14311/ap.2021.61.0497

Google Scholar

[6] Ramesh, S., Shanti, R., & Morris, E. (2012). Exerted influence of deep eutectic solvent concentration in the room temperature ionic conductivity and thermal behavior of corn starch based polymer electrolytes. Journal of Molecular Liquids, 166, 40-43.

DOI: 10.1016/j.molliq.2011.11.010

Google Scholar

[7] Ramesh, S., Shanti, R., & Morris, E. (2012). Studies on the plasticization efficiency of deep eutectic solvent in suppressing the crystallinity of corn starch based polymer electrolytes. Carbohydrate polymers, 87(1), 701-706.

DOI: 10.1016/j.carbpol.2011.08.047

Google Scholar

[8] Kumar, M. S., & Rao, M. C. (2019). Effect of Al2O3 on structural and dielectric properties of PVP-CH3COONa based solid polymer electrolyte films for energy storage devices. Heliyon, 5(10), e02727.

DOI: 10.1016/j.heliyon.2019.e02727

Google Scholar

[9] Kumar, M. S., & Rao, M. C. (2018). Dielectric studies on PVP-CH3COONa based solid polymer electrolytes. Materials Today: Proceedings, 5(13), 26405-26410.

DOI: 10.1016/j.matpr.2018.08.093

Google Scholar

[10] Kasturi, P. R., Ramasamy, H., Meyrick, D., Lee, Y. S., & Selvan, R. K. (2019). Preparation of starch-based porous carbon electrode and biopolymer electrolyte for all solid-state electric double layer capacitor. Journal of colloid and interface science, 554, 142-156.

DOI: 10.1016/j.jcis.2019.06.081

Google Scholar

[11] Alvarez-Ramirez, J., Vazquez-Arenas, J., García-Hernández, A., & Vernon-Carter, E. J. (2019). Improving the mechanical performance of green starch/glycerol/Li+ conductive films through cross-linking with Ca2+. Solid state ionics, 332, 1-9.

DOI: 10.1016/j.ssi.2019.01.002

Google Scholar

[12] Abdullah, A. M., Aziz, S. B., Brza, M. A., Saeed, S. R., Al-Asbahi, B. A., Sadiq, N. M., ... & Murad, A. R. (2022). Glycerol as an efficient plasticizer to increase the DC conductivity and improve the ion transport parameters in biopolymer based electrolytes: XRD, FTIR and EIS studies. Arabian Journal of Chemistry, 15(6), 103791.

DOI: 10.1016/j.arabjc.2022.103791

Google Scholar

[13] Verma, M. L., Minakshi, M., & Singh, N. K. (2014). Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. Electrochimica Acta, 137, 497-503.

DOI: 10.1016/j.electacta.2014.06.039

Google Scholar

[14] Hwang, M., San Jeong, J., Lee, J. C., Yu, S., Jung, H. S., Cho, B. S., & Kim, K. Y. (2021). Composite solid polymer electrolyte with silica filler for structural supercapacitor applications. Korean Journal of Chemical Engineering, 38(2), 454-460.

DOI: 10.1007/s11814-020-0695-y

Google Scholar

[15] Alvarez-Ramirez, J., Vazquez-Arenas, J., García-Hernández, A., & Vernon-Carter, E. J. (2019). Improving the mechanical performance of green starch/glycerol/Li+ conductive films through cross-linking with Ca2+. Solid state ionics, 332, 1-9.

DOI: 10.1016/j.ssi.2019.01.002

Google Scholar

[16] Abdul Halim, S. I., Chan, C. H., & Apotheker, J. (2021). Basics of teaching electrochemical impedance spectroscopy of electrolytes for ion-rechargeable batteries–part 1: a good practice on estimation of bulk resistance of solid polymer electrolytes. Chemistry Teacher International, 3(2), 105-115.

DOI: 10.1515/cti-2020-0011

Google Scholar