[1]
B. Craig, T. Schoetz, A. Cruden, and C. Ponce de Leon, "Review of current progress in non-aqueous aluminium batteries," Renew. Sustain. Energy Rev., vol. 133, no. July, p.110100, 2020.
DOI: 10.1016/j.rser.2020.110100
Google Scholar
[2]
K. E. Aifantis, S. A. Hackney, and R. V. Kumar, High energy density lithium batteries. Wiley Online Library, 2010.
Google Scholar
[3]
A. T. Fismatika, M. Mahardika, B. Arifvianto, and M. Akhsin, "Rancang bangun mesin separator magnetik untuk proses daur ulang baterai litium 18650."
Google Scholar
[4]
P. Canepa et al., "Odyssey of multivalent cathode materials: open questions and future challenges," Chem. Rev., vol. 117, no. 5, p.4287–4341, 2017.
DOI: 10.1021/acs.chemrev.6b00614
Google Scholar
[5]
H. Wang et al., "Binder-free V2O5 cathode for greener rechargeable aluminum battery," ACS Appl. Mater. Interfaces, vol. 7, no. 1, p.80–84, 2015.
DOI: 10.1021/am508001h
Google Scholar
[6]
N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research development on sodium-ion batteries," Chem. Rev., vol. 114, no. 23, p.11636–11682, 2014.
DOI: 10.1021/cr500192f
Google Scholar
[7]
Y. H. Zhu et al., "Reconstructed Orthorhombic V2O5 Polyhedra for Fast Ion Diffusion in K-Ion Batteries," Chem, vol. 5, no. 1, p.168–179, 2019.
DOI: 10.1016/j.chempr.2018.10.004
Google Scholar
[8]
C. Kuang, W. Zeng, and Y. Li, "A Review of Electrode for Rechargeable Magnesium Ion Batteries," J. Nanosci. Nanotechnol., vol. 19, no. 1, p.12–25, 2018.
DOI: 10.1166/jnn.2019.16435
Google Scholar
[9]
S. Wang et al., "A novel dual-graphite aluminum-ion battery," Energy Storage Mater., vol. 12, p.119–127, 2018.
DOI: 10.1016/j.ensm.2017.12.010
Google Scholar
[10]
Z. Noer and M. Irma, Bahan-bahan Penyusun Baterai. Guepedia.
Google Scholar
[11]
E. Ojogbo, E. O. Ogunsona, and T. H. Mekonnen, "Chemical and physical modifications of starch for renewable polymeric materials," Mater. Today Sustain., vol. 7–8, p.100028, 2020.
DOI: 10.1016/j.mtsust.2019.100028
Google Scholar
[12]
L. Mao, S. Imam, S. Gordon, P. Cinelli, and E. Chiellini, "Extruded cornstarch-glycerol-polyvinyl alcohol blends: mechanical properties, morphology, and biodegradability," J. Polym. Environ., vol. 8, no. 4, p.205–211, 2000.
Google Scholar
[13]
L. V. S. Lopes, D. C. Dragunski, A. Pawlicka, and J. P. Donoso, "Nuclear magnetic resonance and conductivity study of starch based polymer electrolytes," Electrochim. Acta, vol. 48, no. 14–16, p.2021–2027, 2003.
DOI: 10.1016/s0013-4686(03)00181-6
Google Scholar
[14]
X. Ma, J. Yu, K. He, and N. Wang, "The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes," Macromol. Mater. Eng., vol. 292, no. 4, p.503–510, 2007.
DOI: 10.1002/mame.200600445
Google Scholar
[15]
H. Xiong, S. Tang, H. Tang, and P. Zou, "The structure and properties of a starch-based biodegradable film," Carbohydr. Polym., vol. 71, no. 2, p.263–268, 2008.
DOI: 10.1016/j.carbpol.2007.05.035
Google Scholar
[16]
R. F. M. S. Marcondes, P. S. D'Agostini, J. Ferreira, E. M. Girotto, A. Pawlicka, and D. C. Dragunski, "Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application," Solid State Ionics, vol. 181, no. 13–14, p.586–591, 2010.
DOI: 10.1016/j.ssi.2010.03.016
Google Scholar
[17]
A. H. Ahmad, "Electrical analysis of cornstarch-based polymer electrolyte doped with NaCl," in Solid state phenomena, 2017, vol. 268, p.347–351.
DOI: 10.4028/www.scientific.net/ssp.268.347
Google Scholar
[18]
M. Sivakumar, R. Subadevi, S. Rajendran, H.-C. Wu, and N.-L. Wu, "Compositional effect of PVdF–PEMA blend gel polymer electrolytes for lithium polymer batteries," Eur. Polym. J., vol. 43, no. 10, p.4466–4473, 2007.
DOI: 10.1016/j.eurpolymj.2007.08.001
Google Scholar
[19]
K. O. K. Leong, "Preparation and Characterization of Solid Polymer Electrolyte Based on Carboxymethyl Chitosan, Ammonia Nitrate and Ethylene Carbonate," Eurasia Proc. Sci. Technol. Eng. Math., no. 2, p.10–16, 2018.
Google Scholar
[20]
C.-W. Liew and S. Ramesh, "Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes," Carbohydr. Polym., vol. 124, p.222–228, 2015.
DOI: 10.1016/j.carbpol.2015.02.024
Google Scholar
[21]
S. B. Shahrudin and A. H. Ahmad, "Electrical analysis of cornstarch-based polymer electrolyte doped with NaCI," Solid State Phenom., vol. 268 SSP, p.347–351, 2017.
DOI: 10.4028/www.scientific.net/SSP.268.347
Google Scholar
[22]
W. H. Meyer, "Polymer electrolytes for lithium‐ion batteries," Adv. Mater., vol. 10, no. 6, p.439–448, 1998.
DOI: 10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i
Google Scholar
[23]
S. Bashir, M. Y. Chong, M. Hina, K. Kamran, S. Ramesh, and K. Ramesh, Aqueous solid and gel electrolytes for supercapattery. INC, 2021.
DOI: 10.1016/b978-0-12-819897-1.00004-5
Google Scholar
[24]
F. Fatin, K. H. Awang, M. Kamarudin, and H. Faiz, "EFFECT OF SODIUM BISULFITE ON CORN STARCH SOLID POLYMER ELECTROLYTE (Kesan Sodium Bisulfit terhadap Elektrolit Polimer Pepejal Kanji)," Malaysian J. Anal. Sci., vol. 25, no. 2, p.224–233, 2021.
Google Scholar
[25]
S. I. Abdul Halim, C. H. Chan, and J. Apotheker, "Basics of teaching electrochemical impedance spectroscopy of electrolytes for ion-rechargeable batteries - Part 2: Dielectric response of (non-) polymer electrolytes," Chem. Teach. Int., vol. 3, no. 2, p.117–129, 2021.
DOI: 10.1515/cti-2020-0018
Google Scholar
[26]
T. J. Benedict, S. Banumathi, A. Veluchamy, R. Gangadharan, A. Z. Ahamad, and S. Rajendran, "Characterization of plasticized solid polymer electrolyte by XRD and AC impedance methods," J. Power Sources, vol. 75, no. 1, p.171–174, 1998.
DOI: 10.1016/s0378-7753(98)00063-9
Google Scholar
[27]
K. H. Teoh, C. S. Lim, and S. Ramesh, "Lithium ion conduction in corn starch based solid polymer electrolytes," Meas. J. Int. Meas. Confed., vol. 48, no. 1, p.87–95, 2014.
DOI: 10.1016/j.measurement.2013.10.040
Google Scholar
[28]
V. Singh, S. Z. Ali, R. Somashekar, and P. S. Mukherjee, "Nature of crystallinity in native and acid modified starches," Int. J. Food Prop., vol. 9, no. 4, p.845–854, 2006.
DOI: 10.1080/10942910600698922
Google Scholar
[29]
L. Kong, C. Lee, S. H. Kim, and G. R. Ziegler, "Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy," J. Phys. Chem. B, vol. 118, no. 7, p.1775–1783, 2014.
DOI: 10.1021/jp411130n
Google Scholar