[1]
Xiong, L. et al. LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity. Solid State Ionics 309, 22–26 (2017).
DOI: 10.1016/j.ssi.2017.06.018
Google Scholar
[2]
Oh, G., Hirayama, M., Kwon, O., Suzuki, K. & Kanno, R. Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte. Chem. Mater. 28, 2634–2640 (2016).
DOI: 10.1021/acs.chemmater.5b04940
Google Scholar
[3]
Tatsumisago, M., Takano, R., Tadanaga, K. & Hayashi, A. Preparation of Li3BO3–Li2SO4 glass–ceramic electrolytes for all-oxide lithium batteries. J. Power Sources 270, 603–607 (2014).
DOI: 10.1016/j.jpowsour.2014.07.061
Google Scholar
[4]
Liang, Y., Peng, C., Kamiike, Y., Kuroda, K. & Okido, M. Gallium doped NASICON type LiTi2(PO4)3 thin-film grown on graphite anode as solid electrolyte for all solid state lithium batteries. J. Alloys Compd. 775, 1147–1155 (2019).
DOI: 10.1016/j.jallcom.2018.10.226
Google Scholar
[5]
Inaguma, Y. et al. Effect of lithium isotopes on the phase transition in NASICON-type lithium-ion conductor LiZr2(PO4)3. Solid State Ionics 321, 29–33 (2018).
DOI: 10.1016/j.ssi.2018.04.002
Google Scholar
[6]
Xu, X. et al. The preparation and lithium mobility of zinc based NASICON-type solid electrolyte Li1+2x+2yAlxZnyTi2−x−ySixP3−xO12. Ceram. Int. 40, 3819–3822 (2014).
DOI: 10.1016/j.ceramint.2013.08.043
Google Scholar
[7]
Kosova, N. V, Devyatkina, E. T., Stepanov, A. P. & Buzlukov, A. L. Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x= 0; 0.3) prepared by mechanical activation. Ionics (Kiel). 14, 303–311 (2008).
DOI: 10.1007/s11581-007-0197-5
Google Scholar
[8]
Chen, K., Shen, Y., Zhang, Y., Lin, Y. & Nan, C.-W. High capacity and cyclic performance in a three-dimensional composite electrode filled with inorganic solid electrolyte. J. Power Sources 249, 306–310 (2014).
DOI: 10.1016/j.jpowsour.2013.10.113
Google Scholar
[9]
Kwatek, K. & Nowiński, J. L. The lithium-ion-conducting ceramic composite based on LiTi2(PO4)3 with addition of LiF. Ionics (Kiel). 25, 41–50 (2019).
DOI: 10.1007/s11581-018-2584-5
Google Scholar
[10]
Kee, Y., Dimov, N., Minami, K. & Okada, S. Orthorhombic Lithium Titanium Phosphate as an Anode Material for Li-ion Rechargeable Battery. Electrochim. Acta 174, 516–520 (2015).
DOI: 10.1016/j.electacta.2015.06.032
Google Scholar
[11]
Kwatek, K. & Nowiński, J. L. Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid. Solid State Ionics 302, 54–60 (2017).
DOI: 10.1016/j.ssi.2016.11.020
Google Scholar
[12]
Banyamin, Z. Y., Kelly, P. J., West, G. & Boardman, J. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings vol. 4 732–746 (2014).
DOI: 10.3390/coatings4040732
Google Scholar
[13]
Yu, C. et al. Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li6PS5Br solid electrolyte. J. Mater. Chem. A 5, 21178–21188 (2017).
DOI: 10.1039/c7ta05031c
Google Scholar
[14]
Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).
DOI: 10.1149/1.2086597
Google Scholar
[15]
Kunshina, G. B., Bocharova, I. V & Ivanenko, V. I. Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity. Inorg. Mater. Appl. Res. 8, 238–244 (2017).
DOI: 10.1134/s2075113317020137
Google Scholar