Enhanced Ionic Conductivity of Fluoride-Doped LiTi2(PO4)3 as Solid Electrolyte of Lithium-Ion Battery

Article Preview

Abstract:

In this study, LiTi2(PO4)3 (LTP) was synthesized by the addition of lithium fluoride (LiF) of 0 %, 5 %, and 10 wt.%. A wet solid-state reaction method is applied by mixing Li2CO3, TiO2, and NH4H2PO4 into a ball mill, then calcined at 900o C for 12 hr. XRD pattern of Fluoride-doped LTP is indexed and found in two phases. First is the Nasicon phase (LiTi2(PO4)3) with rhombohedral structure, and second, the Olivine phase (LiTiPO5) with orthorhombic structure at the addition of 5 % and 10 wt. % of LiF. The higher LiF decreases the cell volume while the crystallite size, particle size, and material density increase. The morphology of the Fluoride-doped LTP is increasingly homogeneous and more rectangle-shape. LTP 2, adding 10 wt. % of LiF, has high ionic conductivity at 4.77 10-4 S cm-1 as a promising candidate material for solid-electrolyte of lithium-ion battery.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-42

Citation:

Online since:

January 2024

Export:

Share:

Citation:

* - Corresponding Author

[1] Xiong, L. et al. LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity. Solid State Ionics 309, 22–26 (2017).

DOI: 10.1016/j.ssi.2017.06.018

Google Scholar

[2] Oh, G., Hirayama, M., Kwon, O., Suzuki, K. & Kanno, R. Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte. Chem. Mater. 28, 2634–2640 (2016).

DOI: 10.1021/acs.chemmater.5b04940

Google Scholar

[3] Tatsumisago, M., Takano, R., Tadanaga, K. & Hayashi, A. Preparation of Li3BO3–Li2SO4 glass–ceramic electrolytes for all-oxide lithium batteries. J. Power Sources 270, 603–607 (2014).

DOI: 10.1016/j.jpowsour.2014.07.061

Google Scholar

[4] Liang, Y., Peng, C., Kamiike, Y., Kuroda, K. & Okido, M. Gallium doped NASICON type LiTi2(PO4)3 thin-film grown on graphite anode as solid electrolyte for all solid state lithium batteries. J. Alloys Compd. 775, 1147–1155 (2019).

DOI: 10.1016/j.jallcom.2018.10.226

Google Scholar

[5] Inaguma, Y. et al. Effect of lithium isotopes on the phase transition in NASICON-type lithium-ion conductor LiZr2(PO4)3. Solid State Ionics 321, 29–33 (2018).

DOI: 10.1016/j.ssi.2018.04.002

Google Scholar

[6] Xu, X. et al. The preparation and lithium mobility of zinc based NASICON-type solid electrolyte Li1+2x+2yAlxZnyTi2−x−ySixP3−xO12. Ceram. Int. 40, 3819–3822 (2014).

DOI: 10.1016/j.ceramint.2013.08.043

Google Scholar

[7] Kosova, N. V, Devyatkina, E. T., Stepanov, A. P. & Buzlukov, A. L. Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x= 0; 0.3) prepared by mechanical activation. Ionics (Kiel). 14, 303–311 (2008).

DOI: 10.1007/s11581-007-0197-5

Google Scholar

[8] Chen, K., Shen, Y., Zhang, Y., Lin, Y. & Nan, C.-W. High capacity and cyclic performance in a three-dimensional composite electrode filled with inorganic solid electrolyte. J. Power Sources 249, 306–310 (2014).

DOI: 10.1016/j.jpowsour.2013.10.113

Google Scholar

[9] Kwatek, K. & Nowiński, J. L. The lithium-ion-conducting ceramic composite based on LiTi2(PO4)3 with addition of LiF. Ionics (Kiel). 25, 41–50 (2019).

DOI: 10.1007/s11581-018-2584-5

Google Scholar

[10] Kee, Y., Dimov, N., Minami, K. & Okada, S. Orthorhombic Lithium Titanium Phosphate as an Anode Material for Li-ion Rechargeable Battery. Electrochim. Acta 174, 516–520 (2015).

DOI: 10.1016/j.electacta.2015.06.032

Google Scholar

[11] Kwatek, K. & Nowiński, J. L. Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid. Solid State Ionics 302, 54–60 (2017).

DOI: 10.1016/j.ssi.2016.11.020

Google Scholar

[12] Banyamin, Z. Y., Kelly, P. J., West, G. & Boardman, J. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings vol. 4 732–746 (2014).

DOI: 10.3390/coatings4040732

Google Scholar

[13] Yu, C. et al. Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li6PS5Br solid electrolyte. J. Mater. Chem. A 5, 21178–21188 (2017).

DOI: 10.1039/c7ta05031c

Google Scholar

[14] Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).

DOI: 10.1149/1.2086597

Google Scholar

[15] Kunshina, G. B., Bocharova, I. V & Ivanenko, V. I. Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity. Inorg. Mater. Appl. Res. 8, 238–244 (2017).

DOI: 10.1134/s2075113317020137

Google Scholar