Carbonate Hydroxyapatite - A Multifunctional Bioceramics with Non-Medical Applications

Article Preview

Abstract:

Carbonate hydroxyapatite is the common derivative of hydroxyapatite found in living systems. It is the building block of most hard tissues, including the teeth and bones. A vast majority of the applications of this versatile material focus on its biomedical applications, which is attributable to its closeness to biological apatites. Hydroxyapatite is a strong precursor to carbonate apatite in nature, and many experiments show that both are similar in a few respects. A significant divergence point is carbonate's obvious impact on its physicochemical properties and concomitant applications. The inclusion of carbonate ions into the lattice of hydroxyapatite results in morphological and physicochemical changes that vary with the method of synthesis and extent of substitution. The unique crystal structure, improved surface area, and porous morphology of carbonate hydroxyapatites also make it useful for catalysis and environmental remediation as adsorbents for heavy metals. This review briefly examines carbonate hydroxyapatite, its synthesis, its modification, and its characterization. It also highlights its biomedical applications while drawing attention to its non-medical potential.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. Cohen, Biomaterials in orthopedic surgery, Am. J. Surg. 114 (1967) pp.31-41.

Google Scholar

[2] E. Marin, F. Boschetto, G. Pezzotti, Biomaterials and biocompatibility: An historical overview, J. Biomed. Mater. Res. A 108 (2020) pp.1617-1633.

DOI: 10.1002/jbm.a.36930

Google Scholar

[3] J. Barralet, S. Best, W. Bonfield, Carbonate substitution in precipitated hydroxyapatite: An investigation into the effects of reaction temperature and bicarbonate ion concentration, J. Biomed. Mater. Res. 41 (1998) pp.79-86.

DOI: 10.1002/(sici)1097-4636(199807)41:1<79::aid-jbm10>3.0.co;2-c

Google Scholar

[4] M.E. Fleet, Carbonated Hydroxyapatite, Boca Raton, Florida, Jenny Stanford Publishing, 2014.

Google Scholar

[5] L.L. Hench, The story of Bioglass, J. Mater. Sci. Mater. Med. 17 (2006) pp.967-978.

DOI: 10.1007/s10856-006-0432-z

Google Scholar

[6] N.R. Patel, P. Gohil, A Review on Biomaterials: Scope, Applications & Human Anatomy Significance, Int. J. Emerging Technol. Adv. Eng. (2012) pp.1-11.

Google Scholar

[7] D.F. Williams, Tissue-biomaterial interactions, J. Mater. Sci. 22 (1987) pp.3421-3445.

Google Scholar

[8] G. Zhu, G. Wang, J.J. Li, Advances in implant surface modifications to improve osseointegration, Mater. Adv. 2 (2021) pp.6901-6927.

DOI: 10.1039/d1ma00675d

Google Scholar

[9] R.B. Seymour, G.B. Kauffman, Polyurethanes: A class of modern versatile materials, J. Chem. Educ. 69 (1992) 909 pp.1-2.

DOI: 10.1021/ed069p909

Google Scholar

[10] M.M. Cirkovic, Kardashev's classification at 50+: A fine vehicle with room for improvement, Serb. Astron. J. (2015) pp.1-15.

Google Scholar

[11] P. Arokiasamy, M.M. Al Bakri Abdullah, S.Z. Abd Rahim, S. Luhar, A.V. Sandu, N.H. Jamil, M. Nabiałek, Synthesis methods of hydroxyapatite from natural sources: A review, Ceram. Int. 48 (2022) pp.14959-14979.

DOI: 10.1016/j.ceramint.2022.03.064

Google Scholar

[12] M. Manoj, R. Subbiah, P. Meena, D. Mangalaraj, N. Ponpandian, C. Viswanathan, K. Park, Green Synthesis and Characterization of Bioceramic Hydroxyapatite (HAp) Nanosheets and Its Cellular Study, Adv. Sci. Eng. Med. 8 (2016) pp.216-221.

DOI: 10.1166/asem.2016.1846

Google Scholar

[13] A. Nandhini, T. Sudhakar, J. Premkumar, Ceramics and Nanoceramics in Biomedical Applications, in: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham, 2021, pp.763-779.

DOI: 10.1007/978-3-030-40513-7_71

Google Scholar

[14] S. Pattnaik, V.R. Subramanyam, M. Bapaji, C.R. Kole, Antibacterial and antifungal activity of aromatic constituents of essential oils, Microbios 89 (1997) 39-46.

Google Scholar

[15] G. Qian, L. Xiong, Q. Ye, Hydroxyapatite-based carriers for tumor targeting therapy, RSC Adv. 13 (2023) pp.16512-16528.

DOI: 10.1039/d3ra01476b

Google Scholar

[16] P. Diaz-Rodriguez, P. Garcia-Trinanes, M.M. Echezarreta Lopez, A. Santovena, M. Landin, Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications, Carbohydr. Polym. 195 (2018) pp.235-242.

DOI: 10.1016/j.carbpol.2018.04.101

Google Scholar

[17] M. Trzaskowska, V. Vivcharenko, A. Przekora, The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties, Int. J. Mol. Sci. 24 (2023) 5083, pp.1-21.

DOI: 10.3390/ijms24065083

Google Scholar

[18] B. Ratner, A. Hoffman, Biomaterials Science: An Interdisciplinary Encleavor, third ed., Elsivier 2019.

Google Scholar

[19] M. Kuntz, B. Masson, T. Pandorf, Current state of the art of the ceramic composite material BIOLOX™ delta, Strength Mater. (2009) pp.133-155.

Google Scholar

[20] D. Arcos, M. Vallet-Regí, Bioceramics for drug delivery, Acta Mater. 61 (2013) pp.890-911.

DOI: 10.1016/j.actamat.2012.10.039

Google Scholar

[21] M. Tavoni, M. Dapporto, A. Tampieri, S. Sprio, Bioactive Calcium Phosphate-Based Composites for Bone Regeneration, J. Compos. Sci. 5 (2021) pp.227-27.

DOI: 10.3390/jcs5090227

Google Scholar

[22] T.S. Sampath Kumar, K. Madhumathi, Antibacterial Potential of Nanobioceramics Used as Drug Carriers, in: I.V. Antoniac (Ed.) Handbook of Bioceramics and Biocomposites, Springer, Cham, 2016, pp.1333-1373.

DOI: 10.1007/978-3-319-12460-5_58

Google Scholar

[23] S.V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials 31 (2010) pp.1465-1485.

DOI: 10.1016/j.biomaterials.2009.11.050

Google Scholar

[24] G. Ma, X.Y. Liu, Hydroxyapatite: Hexagonal or Monoclinic?, Cryst. Growth Des. 9 (2009) pp.2991-2994.

Google Scholar

[25] A. Prihanto, S. Muryanto, R. Ismail, J. Jamari, A.P. Bayuseno, Batch hydrothermal synthesis of nanocrystalline, thermostable hydroxyapatite at various pH and temperature levels, Inorg. Chem. Commun. 157 (2023) pp.1-11.

DOI: 10.1016/j.inoche.2023.111301

Google Scholar

[26] L. Pastero, M. Bruno, D. Aquilano, Habit Change of Monoclinic Hydroxyapatite Crystals Growing from Aqueous Solution in the Presence of Citrate Ions: The Role of 2D Epitaxy, Crystals 8 (2018) pp.1-12.

DOI: 10.3390/cryst8080308

Google Scholar

[27] S.I. Korowash, Z. Keskin-Erdogan, B.A. Hemdan, L.V. Barrios Silva, D.M. Ibrahim, D.Y. Chau, Selenium- and/or copper-substituted hydroxyapatite: A bioceramic substrate for biomedical applications, J. Biomater. Appl. 38 (2023) pp.351-360.

DOI: 10.1177/08853282231198726

Google Scholar

[28] A. Slepko, A.A. Demkov, First-principles study of the biomineral hydroxyapatite, Phys. Rev. B 84 (2011) pp.1-11.

DOI: 10.1103/physrevb.84.134108

Google Scholar

[29] J.C. Elliott, P.E. Mackie, R.A. Young, Monoclinic hydroxyapatite, Science 180 (1973) pp.1055-1057.

DOI: 10.1126/science.180.4090.1055

Google Scholar

[30] A. Haider, S. Haider, S.S. Han, I.-K. Kang, Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review, RSC Adv. 7 (2017) pp.7442-7458.

DOI: 10.1039/c6ra26124h

Google Scholar

[31] V. Uskoković, Ion-doped hydroxyapatite: An impasse or the road to follow?, Ceram. Int. 46 (2020) pp.11443-11465.

DOI: 10.1016/j.ceramint.2020.02.001

Google Scholar

[32] J. Krenkova, N.A. Lacher, F. Svec, Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides, Anal. Chem. 82 (2010) pp.8335-8341.

DOI: 10.1021/ac1018815

Google Scholar

[33] L. Russo, F. Taraballi, C. Lupo, A. Poveda, J. Jimenez-Barbero, M. Sandri, A. Tampieri, F. Nicotra, L. Cipolla, Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation, Interface Focus 4 (2014) 20130040 pp.1-8.

DOI: 10.1098/rsfs.2013.0040

Google Scholar

[34] J.F. Cawthray, A.L. Creagh, C.A. Haynes, C. Orvig, Ion exchange in hydroxyapatite with lanthanides, Inorg. Chem. 54 (2015) pp.1440-1445.

DOI: 10.1021/ic502425e

Google Scholar

[35] I.L. Balasooriya, J. Chen, S.M. Korale Gedara, Y. Han, M.N. Wickramaratne, Applications of Nano Hydroxyapatite as Adsorbents: A Review, Nanomaterials (Basel) 12 (2022) pp.1-24.

DOI: 10.3390/nano12142324

Google Scholar

[36] C.H. Yoder, J.D. Pasteris, K.N. Worcester, D.V. Schermerhorn, Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state (2)H NMR, Calcif. Tissue Int. 90 (2012) pp.60-67.

DOI: 10.1007/s00223-011-9542-9

Google Scholar

[37] D.S. Gomes, A.M.C. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine, Cerâmica 65 (2019) pp.282-302.

DOI: 10.1590/0366-69132019653742706

Google Scholar

[38] A. Chaabouni, Kinetic Study of the Dissolution of Tunisian Natural Phosphate or Francolite in Industrial Phosphoric Acid, JAC 6 (2017) 908-916.

DOI: 10.24297/jac.v6i1.6585

Google Scholar

[39] N.A.S. Mohd Pu'ad, P. Koshy, H.Z. Abdullah, M.I. Idris, T.C. Lee, Syntheses of hydroxyapatite from natural sources, Heliyon 5 (2019) e01588 pp.1-14.

DOI: 10.1016/j.heliyon.2019.e01588

Google Scholar

[40] A. Yoleva, I. Mihailova, S. Djambazov, Solid-State Synthesis of Hydroxyapatite From Black Sea Rapana Venosa Shells, J. Chem. Technol. Metall. 58 (2023) pp.385-393.

DOI: 10.59957/jctm.v58i2.65

Google Scholar

[41] S.C. Wu, H.C. Hsu, H.F. Wang, S.P. Liou, W.F. Ho, Synthesis and Characterization of Nano-Hydroxyapatite Obtained from Eggshell via the Hydrothermal Process and the Precipitation Method, Molecules 28 (2023) 4926 pp.1-13.

DOI: 10.3390/molecules28134926

Google Scholar

[42] R. Vinayagam, S. Kandati, G. Murugesan, L.C. Goveas, A. Baliga, S. Pai, T. Varadavenkatesan, K. Kaviyarasu, R. Selvaraj, Bioinspiration synthesis of hydroxyapatite nanoparticles using eggshells as a calcium source: Evaluation of Congo red dye adsorption potential, J. Mater. Res. Technol. 22 (2023) 169-180.

DOI: 10.1016/j.jmrt.2022.11.093

Google Scholar

[43] L.T. Thien, L.N. Quang Tu, B.C. Trung, N.Q. Long, Au nanoparticles loaded Hydroxyapatite catalyst prepared from waste eggshell: synthesis, characterization and application in VOC removal, IOP Conf. Ser. Earth Environ. Sci. 964 (2022) pp.1-11.

DOI: 10.1088/1755-1315/964/1/012027

Google Scholar

[44] C. Charlena, A. Maddu, T. Hidayat, Synthesis and Characterization of Hydroxyapatite from Green Mussel Shell with Sol-Gel Method, Jur. Kim. Valen. 8 (2022) pp.269-279.

DOI: 10.15408/jkv.v8i2.27494

Google Scholar

[45] M. Abdelraof, M.M. Farag, Z.M. Al-Rashidy, H.Y.A. Ahmed, H. El-Saied, M.S. Hasanin, Green Synthesis of Bioactive Hydroxyapatite/Cellulose Composites from Food Industrial Wastes, J. Inorg. Organomet. Polym. Mater. 32 (2022) pp.4614-4626.

DOI: 10.1007/s10904-022-02462-2

Google Scholar

[46] F. Cestari, F. Agostinacchio, A. Galotta, G. Chemello, A. Motta, V.M. Sglavo, Nano-Hydroxyapatite Derived from Biogenic and Bioinspired Calcium Carbonates: Synthesis and In Vitro Bioactivity, Nanomaterials (Basel) 11 (2021) pp.1-14.

DOI: 10.3390/nano11020264

Google Scholar

[47] S. Pang, Y. He, P. He, X. Luo, Z. Guo, H. Li, Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior, Colloids Surf. B. Biointerfaces 171 (2018) pp.40-48.

DOI: 10.1016/j.colsurfb.2018.06.046

Google Scholar

[48] Z.H. Zhao, X.L. Ma, B. Zhao, P. Tian, J.X. Ma, J.Y. Kang, Y. Zhang, Y. Guo, L. Sun, Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration, Cell Prolif. 54 (2021) e13043 pp.1-17.

DOI: 10.1111/cpr.13043

Google Scholar

[49] A. Ressler, A. Žužić, I. Ivanišević, N. Kamboj, H. Ivanković, Ionic substituted hydroxyapatite for bone regeneration applications: A review, Open Ceram. 6 (2021) 100122 pp.1-16.

DOI: 10.1016/j.oceram.2021.100122

Google Scholar

[50] K. Ishikawa, K. Hayashi, Carbonate apatite artificial bone, Sci. Technol. Adv. Mater. 22 (2021) pp.683-694.

Google Scholar

[51] B. Wang, Z. Zhang, H. Pan, Bone Apatite Nanocrystal: Crystalline Structure, Chemical Composition, and Architecture, Biomimetics (Basel) 8 (2023) pp.1-19.

DOI: 10.3390/biomimetics8010090

Google Scholar

[52] R. Legros, N. Balmain, G. Bonel, Age-related changes in mineral of rat and bovine cortical bone, Calcif. Tissue Int. 41 (1987) pp.137-144.

DOI: 10.1007/bf02563793

Google Scholar

[53] M.V. Chaikina, N.V. Bulina, O.B. Vinokurova, K.B. Gerasimov, I.Y. Prosanov, N.B. Kompankov, O.B. Lapina, E.S. Papulovskiy, A.V. Ishchenko, S.V. Makarova, Possibilities of Mechanochemical Synthesis of Apatites with Different Ca/P Ratios, Ceramics 5 (2022) pp.404-422.

DOI: 10.3390/ceramics5030031

Google Scholar

[54] A. Nandhini, T. Sudhakar, J. Premkumar, Ceramics and Nanoceramics in Biomedical Applications, in Handbook of Polymer and Ceramic Nanotechnology, Springer, Cham, 2021, pp.763-779.

DOI: 10.1007/978-3-030-40513-7_71

Google Scholar

[55] H. Khan, B. Barkham, A. Trompeter, The use of bioabsorbable materials in orthopaedics, Orthop. Trauma 35 (2021) pp.289-296.

DOI: 10.1016/j.mporth.2021.07.005

Google Scholar

[56] N. Mohd, M. Razali, M.J. Ghazali, N.H. Abu Kasim, 3D-Printed Hydroxyapatite and Tricalcium Phosphates-Based Scaffolds for Alveolar Bone Regeneration in Animal Models: A Scoping Review, Materials (Basel) 15 (2022) 2621 pp.1-16.

DOI: 10.3390/ma15072621

Google Scholar

[57] Y. Ma, A. Wang, J. Li, Q. li, Q. Han, Y. Chen, S. Wang, X. Zheng, H. Cao, S. Bai, Preparation of hydroxyapatite with high surface area and dispersity templated on calcium carbonate in dipeptide hydrogels, Colloids Surf. Physicochem. Eng. Aspects 596 (2020) 124740 pp.1-7.

DOI: 10.1016/j.colsurfa.2020.124740

Google Scholar

[58] O.N. Makshakova, M.R. Gafurov, M.A. Goldberg, The Mutual Incorporation of Mg(2+) and CO(3)(2-) into Hydroxyapatite: A DFT Study, Materials (Basel) 15 (2022) 9046 pp.1-12.

DOI: 10.3390/ma15249046

Google Scholar

[59] S.K. Venkatraman, R. Choudhary, N. Vijayakumar, G. Krishnamurithy, H.R.B. Raghavendran, M.R. Murali, T. Kamarul, A. Suresh, J. Abraham, S. Swamiappan, Investigation on bioactivity, mechanical stability, bactericidal activity and in-vitro biocompatibility of magnesium silicates for bone tissue engineering applications, J. Mater. Res. 37 (2022) pp.608-621.

DOI: 10.1557/s43578-021-00450-9

Google Scholar

[60] L.C. Costello, M. Chellaiah, J. Zou, R.B. Franklin, M.A. Reynolds, The status of citrate in the hydroxyapatite/collagen complex of bone; and Its role in bone formation, J Regen Med Tissue Eng 3 (2014) 4 pp.1-16.

DOI: 10.7243/2050-1218-3-4

Google Scholar

[61] N.V. Sarria, D.M. Rivera Velasco, D.A. Larrahondo Chávez, H.D. Mazuera Ríos, M.A. Gandini Ayerbe, C.E. Goyes López, I.M. Mejía Villareal, Struvite and hydroxyapatite recovery from wastewater treatment plant at Autónoma de Occidente University, Colombia, Case Stud. Chem. Environ. Eng. 6 (2022) 100213 pp.1-14.

DOI: 10.1016/j.cscee.2022.100213

Google Scholar

[62] F. Castro, S. Kuhn, K. Jensen, A. Ferreira, F. Rocha, A. Vicente, J.A. Teixeira, Continuous-flow precipitation of hydroxyapatite in ultrasonic microsystems, Chem. Eng. J. 215-216 (2013) pp.979-987.

DOI: 10.1016/j.cej.2012.11.014

Google Scholar

[63] L. Wang, G.H. Nancollas, Calcium orthophosphates: crystallization and dissolution, Chem. Rev. 108 (2008) pp.4628-4669.

DOI: 10.1021/cr0782574

Google Scholar

[64] S. Baradaran, B. Nasiri-Tabrizi, F.S. Shirazi, S. Saber-Samandari, S. Shahtalebi, W.J. Basirun, Wet chemistry approach to the preparation of tantalum-doped hydroxyapatite: Dopant content effects, Ceram. Int. 44 (2018) pp.2768-2781.

DOI: 10.1016/j.ceramint.2017.11.016

Google Scholar

[65] C.R. Gautam, S. Kumar, S. Biradar, S. Jose, V.K. Mishra, Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material, RSC Adv. 6 (2016) pp.67565-67574.

DOI: 10.1039/c6ra10839c

Google Scholar

[66] S. Jiang, X. Wang, Y. Ma, Y. Zhou, L. Liu, F. Yu, B. Fang, K. Lin, L. Xia, M. Cai, Synergistic Effect of Micro-Nano-Hybrid Surfaces and Sr Doping on the Osteogenic and Angiogenic Capacity of Hydroxyapatite Bioceramics Scaffolds, Int. J. Nanomedicine 17 (2022) pp.783-797.

DOI: 10.2147/ijn.s345357

Google Scholar

[67] X. Lin, X. Wang, L. Tan, P. Wan, X. Yu, Q. Li, K. Yang, Effect of preparation parameters on the properties of hydroxyapatite containing micro-arc oxidation coating on biodegradable ZK60 magnesium alloy, Ceram. Int. 40 (2014) pp.10043-10051.

DOI: 10.1016/j.ceramint.2014.02.104

Google Scholar

[68] B. Wopenka, J.D. Pasteris, A mineralogical perspective on the apatite in bone, Mater. Sci. Eng. C 25 (2005) pp.131-143.

Google Scholar

[69] T. İnce, O. Kaygili, C. Tatar, N. Bulut, S. Koytepe, T. Ates, The effects of Ni-addition on the crystal structure, thermal properties and morphology of Mg-based hydroxyapatites synthesized by a wet chemical method, Ceram. Int. 44 (2018) pp.14036-14043.

DOI: 10.1016/j.ceramint.2018.04.257

Google Scholar

[70] S. Sridevi, S. Sutha, L. Kavitha, D. Gopi, Valorization of biowaste derived nanophase yttrium substituted hydroxyapatite/citrate cellulose/ opuntia mucilage biocomposite: A template assisted synthesis for potential biomedical applications, Mater. Chem. Phys. 273 (2021) pp.125144-12.

DOI: 10.1016/j.matchemphys.2021.125144

Google Scholar

[71] L.C. Costello, M. Chellaiah, J. Zou, R.B. Franklin, M.A. Reynolds, The status of citrate in the hydroxyapatite/collagen complex of bone; and Its role in bone formation, J. Tissue. Eng. Regen. Med. 3 (2014) 4 pp.1-16.

DOI: 10.7243/2050-1218-3-4

Google Scholar

[72] J. Liu, W. Weng, H. Xie, G. Luo, G. Li, W. Sun, C. Ruan, X. Wang, Myoglobin- and Hydroxyapatite-Doped Carbon Nanofiber-Modified Electrodes for Electrochemistry and Electrocatalysis, ACS Omega 4 (2019) pp.15653-15659.

DOI: 10.1021/acsomega.9b02151

Google Scholar

[73] Y. Liu, Y. Tang, Y. Tian, J. Wu, J. Sun, Z. Teng, S. Wang, G. Lu, Gadolinium-Doped Hydroxyapatite Nanorods as T1 Contrast Agents and Drug Carriers for Breast Cancer Therapy, ACS Appl. Nano Mater. 2 (2019) pp.1194-1201.

DOI: 10.1021/acsanm.8b02036

Google Scholar

[74] W. Lai, C. Chen, X. Ren, I.S. Lee, G. Jiang, X. Kong, Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system, Mater. Sci. Eng. C. 62 (2016) pp.166-172.

DOI: 10.1016/j.msec.2016.01.055

Google Scholar

[75] E. Landi, G. Celotti, G. Logroscino, A. Tampieri, Carbonated hydroxyapatite as bone substitute, J. Eur. Ceram. Soc. 23 (2003) pp.2931-2937.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar

[76] B. Wingender, M. Azuma, C. Krywka, P. Zaslansky, J. Boyle, A. Deymier, Carbonate substitution significantly affects the structure and mechanics of carbonated apatites, Acta Biomater. 122 (2021) pp.377-386.

DOI: 10.1016/j.actbio.2021.01.002

Google Scholar

[77] Y. Wang, K. Tsuru, K. Ishikawa, T. Yokoi, M. Kawashita, Fibronectin adsorption on carbonate-containing hydroxyapatite, Ceram. Int. 47 (2021) pp.11769-11776.

DOI: 10.1016/j.ceramint.2021.01.017

Google Scholar

[78] M. Safarzadeh, C.F. Chee, S. Ramesh, Effect of carbonate content on the in vitro bioactivity of carbonated hydroxyapatite, Ceram. Int. 48 (2022) pp.18174-18179.

DOI: 10.1016/j.ceramint.2022.03.076

Google Scholar

[79] H. Pan, B.W. Darvell, Effect of Carbonate on Hydroxyapatite Solubility, Cryst. Growth Des. 10 (2010) pp.845-850.

DOI: 10.1021/cg901199h

Google Scholar

[80] C.C. Kee, H. Ismail, A.F. Mohd Noor, Effect of Synthesis Technique and Carbonate Content on the Crystallinity and Morphology of Carbonated Hydroxyapatite, J. Mater. Sci. Technol. 29 (2013) pp.761-764.

DOI: 10.1016/j.jmst.2013.05.016

Google Scholar

[81] H. Madupalli, B. Pavan, M.M.J. Tecklenburg, Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite, J. Solid State Chem. 255 (2017) pp.27-35.

DOI: 10.1016/j.jssc.2017.07.025

Google Scholar

[82] S. Kranz, M. Heyder, S. Mueller, A. Guellmar, C. Krafft, S. Nietzsche, C. Tschirpke, V. Herold, B. Sigusch, M. Reise, Remineralization of Artificially Demineralized Human Enamel and Dentin Samples by Zinc-Carbonate Hydroxyapatite Nanocrystals, Materials (Basel) 15 (2022) pp.1-14.

DOI: 10.3390/ma15207173

Google Scholar

[83] W.Y. Zhou, M.Wang, W.L. Cheung, B.C. Guo, D.M. Jia, Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion, J. Mater. Sci. Mater. Med. 19 (2008) pp.103-110.

DOI: 10.1007/s10856-007-3156-9

Google Scholar

[84] M.N. Muhammad Syazwan, B.I. Yanny Marliana, The influence of simultaneous divalent cations (Mg2+, Co2+ and Sr2+) substitution on the physico-chemical properties of carbonated hydroxyapatite, Ceram. Int. 45 (2019) pp.14783-14788.

DOI: 10.1016/j.ceramint.2019.04.208

Google Scholar

[85] E. Landi, F. Valentini, A. Tampieri, Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications, Acta Biomater. 4 (2008) pp.1620-1626.

DOI: 10.1016/j.actbio.2008.05.023

Google Scholar

[86] J. Liu, L. Zhao, L. Ni, C. Qiao, D. Li, H. Sun, Z. Zhang, The effect of synthetic alpha-tricalcium phosphate on osteogenics differentiation of rat bone mesenchymal stem cells, Am. J. Transl. Res. 7 (2015) pp.1588-1601.

Google Scholar

[87] M. Vignoles, G. Bonel, D.W. Holcomb, R.A. Young, Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions, Calcif. Tissue Int. 43 (1988) pp.33-40.

DOI: 10.1007/bf02555165

Google Scholar

[88] J.P. Lafon, E. Champion, D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition, J. Eur. Ceram. Soc. 28 (2008) pp.139-147.

DOI: 10.1016/j.jeurceramsoc.2007.06.009

Google Scholar

[89] K. Teraoka, A. Ito, K. Maekawa, K. Onuma, T. Tateishi, S. Tsutsumi, Mechanical properties of hydroxyapatite and OH-carbonated hydroxyapatite single crystals, J. Dent. Res. 77 (1998) pp.1560-1568.

DOI: 10.1177/00220345980770071201

Google Scholar

[90] L. Kong, Y. Gao, G. Lu, Y. Gong, N. Zhao, X. Zhang, A study on the bioactivity of chitosan/ nano-hydroxyapatite composite scaffolds for bone tissue engineering, Eur. Polym. J. 42 (2006) pp.3171-3179.

DOI: 10.1016/j.eurpolymj.2006.08.009

Google Scholar

[91] S.B. Qasim, R.M. Delaine-Smith, T. Fey, A. Rawlinson, I.U. Rehman, Freeze gelated porous membranes for periodontal tissue regeneration, Acta Biomater. 23 (2015) pp.317-328.

DOI: 10.1016/j.actbio.2015.05.001

Google Scholar

[92] T. Leventouri, A. Antonakos, A. Kyriacou, R. Venturelli, E. Liarokapis, V. Perdikatsis, Crystal structure studies of human dental apatite as a function of age, Int. J. Biomater. 2009 (2009) 698547 pp.1-7.

DOI: 10.1155/2009/698547

Google Scholar

[93] R.P. Shellis, J.D.B. Featherstone, A. Lussi, Understanding the Chemistry of Dental Erosion, Monogr. Oral Sci. (2014) pp.163-179.

Google Scholar

[94] D.M. Liu, T. Troczynski, W.J. Tseng, Water-based sol-gel synthesis of hydroxyapatite: process development, Biomaterials 22 (2001) pp.1721-1730.

DOI: 10.1016/s0142-9612(00)00332-x

Google Scholar

[95] T. Kono, T. Sakae, H. Nakada, T. Kaneda, H. Okada, Confusion between Carbonate Apatite and Biological Apatite (Carbonated Hydroxyapatite) in Bone and Teeth, Minerals 12 (2022) 170 pp.1-11.

DOI: 10.3390/min12020170

Google Scholar

[96] G. Spence, N.Patel, R.Brooks, N. Rushton, Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response, J. Biomed. Mater. Res. A 90 (2009) pp.217-224.

DOI: 10.1002/jbm.a.32083

Google Scholar

[97] E. Landi, A. Tampieri, G. Celotti, L. Vichi, M. Sandri, Influence of synthesis and sintering parameters on the characteristics of carbonate apatite, Biomaterials 25 (2004) pp.1763-1770.

DOI: 10.1016/j.biomaterials.2003.08.026

Google Scholar

[98] M. Safarzadeh, C.F. Chee, S. Ramesh, M.N.A. Fauzi, Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA), Ceram. Int. 46 (2020) pp.26784-26789.

DOI: 10.1016/j.ceramint.2020.07.153

Google Scholar

[99] Y. Iwasaki, J.J. Kazama, M. Fukagawa, Molecular Abnormalities Underlying Bone Fragility in Chronic Kidney Disease, Biomed Res. Int. 2017 (2017) 3485785 pp.1-12.

DOI: 10.1155/2017/3485785

Google Scholar

[100] M. Kanazawa, K. Tsuru, N. Fukuda, Y. Sakemi, Y. Nakashima, K. Ishikawa, Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects, J. Mater. Sci. Mater. Med. 28 (2017) 85 pp.1-11.

DOI: 10.1007/s10856-017-5896-5

Google Scholar

[101] A.H. De Aza, P. Velásquez, M.I. Alemany, P. Pena, P.N. De Aza, In Situ Bone‐Like Apatite Formation From a Bioeutectic® Ceramic in SBF Dynamic Flow, J. Am. Ceram. Soc. 90 (2007) pp.1200-1207.

DOI: 10.1111/j.1551-2916.2007.01534.x

Google Scholar

[102] D.V. Abere, S.A. Ojo, G.M. Oyatogun, M.B. Paredes-Epinosa, M.C.D. Niluxsshun, A. Hakami, Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: A mini review, Biomed. Eng. Adv. 4 (2022) pp.100056-100062.

DOI: 10.1016/j.bea.2022.100056

Google Scholar

[103] L.T. Bang, B.D. Long, R. Othman, Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: synthesis, mechanical properties, and solubility evaluations, Sci. World J. 2014 (2014) pp.1-9.

DOI: 10.1155/2014/969876

Google Scholar

[104] M. Robin, C.B. Tovani, J.-M. Krafft, G. Costentin, T. Azaïs, N. Nassif, The Concentration of Bone-Related Organic Additives Drives the Pathway of Apatite Formation, Cryst. Growth Des. 21 (2021) pp.3994-4004.

DOI: 10.1021/acs.cgd.1c00316

Google Scholar

[105] H.A. Permatasari, Y. Yusuf, Characteristics of Carbonated Hydroxyapatite Based on Abalone Mussel Shells (Halioitis asinina) Synthesized by Precipitation Method with Aging Time Variations, IOP Conf. Ser.: Mater. Sci. Eng. 546 (2019) 042031 pp.1-7.

DOI: 10.1088/1757-899x/546/4/042031

Google Scholar

[106] J. Liu, S. Shi, C. Li, X. Hong, Z. Gu, F. Li, J. Zhai, Q. Zhang, J. Liao, N. Liu, C. Liu, U(VI) adsorption by one-step hydrothermally synthesized cetyltrimethylammonium bromide modified hydroxyapatite-bentonite composites from phosphate‑carbonate coexisted solution, Appl. Clay Sci. 203 (2021) 106027 pp.1-12.

DOI: 10.1016/j.clay.2021.106027

Google Scholar

[107] S. Aziz, I.D. Ana, Y. Yusuf, H.D. Pranowo, Synthesis of Biocompatible Silver-Doped Carbonate Hydroxyapatite Nanoparticles Using Microwave-Assisted Precipitation and In Vitro Studies for the Prevention of Peri-Implantitis, J. Funct. Biomater. 14 (2023) pp.1-14.

DOI: 10.3390/jfb14070385

Google Scholar

[108] J.C. Merry, I.R. Gibson, S.M. Best, W. Bonfield, Synthesis and characterization of carbonate hydroxyapatite, J. Mater. Sci. Mater. Med. 9 (1998) pp.779-783.

Google Scholar

[109] M. Gruselle, K. Tõnsuaadu, P. Gredin, C. Len, Apatites based catalysts: A tentative classification, Mol. Catal. 519 (2022) 112146 pp.1-20.

DOI: 10.1016/j.mcat.2022.112146

Google Scholar

[110] F. Ghorbani, A. Zamanian, A. Behnamghader, M.D. Joupari, A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite, Mater. Sci. Eng. C. 94 (2019) pp.729-739.

DOI: 10.1016/j.msec.2018.10.010

Google Scholar

[111] W. Kong, K. Zhao, C. Gao, P. Zhu, Synthesis and characterization of carbonated hydroxyapatite with layered structure, Mater. Lett. 255 (2019) 126552 pp.1-4.

DOI: 10.1016/j.matlet.2019.126552

Google Scholar

[112] G.D. Venkatasubbu, S. Ramasamy, G.P. Reddy, J. Kumar, In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles, Biomed. Microdevices 15 (2013) pp.711-726.

DOI: 10.1007/s10544-013-9767-7

Google Scholar

[113] S. Padilla, I. Izquierdo-Barba, M. Vallet-Regí, High Specific Surface Area in Nanometric Carbonated Hydroxyapatite, Chem. Mater. 20 (2008) pp.5942-5944.

DOI: 10.1021/cm801626k

Google Scholar

[114] J.M. Coelho, J.A. Moreira, A. Almeida, F.J. Monteiro, Synthesis and characterization of HAp nanorods from a cationic surfactant template method, J. Mater. Sci. Mater. Med. 21 (2010) pp.2543-2549.

DOI: 10.1007/s10856-010-4122-5

Google Scholar

[115] S. Pokhrel, Hydroxyapatite: Preparation, Properties and Its Biomedical Applications, Adv. Chem. Eng. 08 (2018) pp.225-240.

Google Scholar

[116] M.N.P. Araújo, W.E.d.S. Vieira, L.P.d. Carvalho, H.D.F.d. Melo, T.C.d. Souza, R.A. Berenguer, Obtenção e caracterização de hidroxiapatita obtida por síntese hidrotermal e caracterização, Res, Soc. Dev. 9 (2020) pp.1-23.

DOI: 10.33448/rsd-v9i11.10247

Google Scholar

[117] T.S.S. Kumar, I. Manjubala, J. Gunasekaran, Synthesis of carbonated calcium phosphate ceramics using microwave irradiation, Biomaterials 21 (2000) pp.1623-1629.

DOI: 10.1016/s0142-9612(00)00014-4

Google Scholar

[118] S.M. Barinov, J.V. Rau, S.N. Cesaro, J. Durisin, I.V. Fadeeva, D. Ferro, L. Medvecky, G. Trionfetti, Carbonate release from carbonated hydroxyapatite in the wide temperature rage, J. Mater. Sci. Mater. Med. 17 (2006) pp.597-604.

DOI: 10.1007/s10856-006-9221-y

Google Scholar

[119] C. Xue, Y. Chen, Y. Huang, P. Zhu, Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods, Nanoscale Res. Lett. 10 (2015) 1018 pp.1-6.

DOI: 10.1186/s11671-015-1018-9

Google Scholar

[120] S. Lala, M. Ghosh, P.K. Das, D. Das, T. Kar, S.K. Pradhan, Magnesium substitution in carbonated hydroxyapatite: Structural and microstructural characterization by Rietveld's refinement, Mater. Chem. Phys. 170 (2016) pp.319-329.

DOI: 10.1016/j.matchemphys.2015.12.058

Google Scholar

[121] W.Y. Wong, A.-F.M. Noor, Synthesis and Sintering-wet Carbonation of Nanosized Carbonated Hydroxyapatite, Procedia Chem. 19 (2016) pp.98-105.

DOI: 10.1016/j.proche.2016.03.121

Google Scholar

[122] I. Ezekiel, S.R. Kasim, Y.M.B. Ismail, A.-F.M. Noor, Nanoemulsion synthesis of carbonated hydroxyapatite nanopowders: Effect of variant CO32−/PO43− molar ratios on phase, morphology, and bioactivity, Ceram. Int. 44 (2018) pp.13082-13089.

DOI: 10.1016/j.ceramint.2018.04.128

Google Scholar

[123] M. Safarzadeh, S. Ramesh, C.Y. Tan, H. Chandran, Y.C. Ching, A.F.M. Noor, S. Krishnasamy, W.D. Teng, Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios, Bol. Soc. Esp. Ceram. V. 59 (2020) pp.73-80.

DOI: 10.1016/j.bsecv.2019.08.001

Google Scholar

[124] P. Liu, Z. Li, L. Yuan, X. Sun, Y. Zhou, Pourbaix-Guided Mineralization and Site-Selective Photoluminescence Properties of Rare Earth Substituted B-Type Carbonated Hydroxyapatite Nanocrystals, Molecules 26 (2021) pp.1-22.

DOI: 10.3390/molecules26030540

Google Scholar

[125] M. Furko, Z.E. Horváth, A. Sulyok, V.K. Kis, K. Balázsi, J. Mihály, C. Balázsi, Preparation and morphological investigation on bioactive ion-modified carbonated hydroxyapatite-biopolymer composite ceramics as coatings for orthopaedic implants, Ceram. Int. 48 (2022) pp.760-768.

DOI: 10.1016/j.ceramint.2021.09.156

Google Scholar

[126] A. Marten, P. Fratzl, O. Paris, P. Zaslansky, On the mineral in collagen of human crown dentine, Biomaterials 31 (2010) pp.5479-5490.

DOI: 10.1016/j.biomaterials.2010.03.030

Google Scholar

[127] W.L. Suchanek, P. Shuk, K. Byrappa, R.E. Riman, K.S. TenHuisen, V.F. Janas, Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature, Biomaterials 23 (2002) pp.699-710.

DOI: 10.1016/s0142-9612(01)00158-2

Google Scholar

[128] C. Shu, W. Yanwei, L. Hong, P. Zhengzheng, Y. Kangde, Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods, Ceram. Int. 31 (2005) pp.135-138.

DOI: 10.1016/j.ceramint.2004.04.012

Google Scholar

[129] H. Damayanti, K. Wahyudi, K. Noordiningsih, A. Ratnasari, D. Rianti, Dry mechanosynthesis and characterization of carbonate apatite based on Indonesian natural sources, AIP Conf. Proc. (2021) 020072 pp.1-6.

DOI: 10.1063/5.0052812

Google Scholar

[130] A. Ito, K. Maekawa, S. Tsutsumi, F. Ikazaki, T. Tateishi, Solubility product of OH-carbonated hydroxyapatite, J. Biomed. Mater. Res. 36 (1997) pp.522-528.

DOI: 10.1002/(sici)1097-4636(19970915)36:4<522::aid-jbm10>3.0.co;2-c

Google Scholar

[131] E.G. Nordström, K.H. Karlsson, Carbonate-doped hydroxyapatite, J. Mater. Sci. Mater. Med. 1 (1990) pp.182-184.

Google Scholar

[132] G. Qian, W. Liu, L. Zheng, L. Liu, Facile synthesis of three dimensional porous hydroxyapatite using carboxymethylcellulose as a template, Results Phys. 7 (2017) pp.1623-1627.

DOI: 10.1016/j.rinp.2017.04.033

Google Scholar

[133] J.J. Lovón-Quintana, J.K. Rodriguez-Guerrero, P.G. Valença, Carbonate hydroxyapatite as a catalyst for ethanol conversion to hydrocarbon fuels, Appl. Catal. A: Gen. 542 (2017) pp.136-145.

DOI: 10.1016/j.apcata.2017.05.020

Google Scholar

[134] K. Ishikawa, Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions, Materials 3 (2010) pp.1138-1155.

DOI: 10.3390/ma3021138

Google Scholar

[135] M.H. Prado Da Silva, J.H.C. Lima, G.A. Soares, C.N. Elias, M.C. de Andrade, S.M. Best, I.R. Gibson, Transformation of monetite to hydroxyapatite in bioactive coatings on titanium, Surf. Coat. Technol. 137 (2001) pp.270-276.

DOI: 10.1016/s0257-8972(00)01125-7

Google Scholar

[136] L.L. Hench, Sol-gel materials for bioceramic applications, Curr. Opin. Solid State Mater. Sci. 2 (1997) pp.604-610.

DOI: 10.1016/s1359-0286(97)80053-8

Google Scholar

[137] A. Afshar, M. Ghorbani, N. Ehsani, M.R. Saeri, C.C. Sorrell, Some important factors in the wet precipitation process of hydroxyapatite, Mater. Des. 24 (2003) pp.197-202.

DOI: 10.1016/s0261-3069(03)00003-7

Google Scholar

[138] B.L. Thi, H.Q. Khai, B.D. Long, S. Ramesh, Fabrication of nanoparticle carbonated hydroxyapatite by phase transformation of calcium carbonate prepared by sol-gel hydrothermal method, AIP Conf. Proc. 2643 (2023).

DOI: 10.1063/5.0113867

Google Scholar

[139] A. Deptuła, W. Łada, T. Olczak, A. Borello, C. Alvani, A. di Bartolomeo, Preparation of spherical powders of hydroxyapatite by sol-gel process, J. Non-Cryst. Solids 147-148 (1992) pp.537-541.

DOI: 10.1016/s0022-3093(05)80672-6

Google Scholar

[140] Y. Liu, Y. Tang, J. Wu, J. Sun, X. Liao, Z. Teng, G. Lu, Facile synthesis of biodegradable flower-like hydroxyapatite for drug and gene delivery, J. Colloid Interface Sci. 570 (2020) pp.402-410.

DOI: 10.1016/j.jcis.2020.03.010

Google Scholar

[141] G. Ma, Three common preparation methods of hydroxyapatite, IOP Conf. Ser.: Mater. Sci. Eng. 688 (2019) 033057 pp.1-13.

DOI: 10.1088/1757-899x/688/3/033057

Google Scholar

[142] U. Ripamonti, J. Crooks, L. Khoali, L. Roden, The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs, Biomaterials 30 (2009) pp.1428-1439.

DOI: 10.1016/j.biomaterials.2008.10.065

Google Scholar

[143] X. Pang, H. Zeng, J. Liu, S. Wei, Y. Zheng, The Properties of Nanohydroxyapatite Materials and its Biological Effects, Mater. Sci. Appl. 01 (2010) pp.81-90.

DOI: 10.4236/msa.2010.12015

Google Scholar

[144] D.A. Nowicki, J.M.S. Skakle, I.R. Gibson, Faster synthesis of A-type carbonated hydroxyapatite powders prepared by high-temperature reaction, Adv. Powder Technol. 31 (2020) pp.3318-3327.

DOI: 10.1016/j.apt.2020.06.022

Google Scholar

[145] O.J.t. Juhl, S.M. Latifi, H.J. Donahue, Effect of carbonated hydroxyapatite submicron particles size on osteoblastic differentiation, J. Biomed. Mater. Res. B Appl. Biomater. 109 (2021) pp.1369-1379.

DOI: 10.1002/jbm.b.34797

Google Scholar

[146] M.A.M. Castro, T.O. Portela, G.S. Correa, M.M. Oliveira, J.H.G. Rangel, S.F. Rodrigues, J.M.R. Mercury, Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying pH and synthesis time, Bol. Soc. Esp. Ceram. V. 61 (2022) pp.35-41.

DOI: 10.1016/j.bsecv.2020.06.003

Google Scholar

[147] A.A. Chaudhry, J.C. Knowles, I. Rehman, J.A. Darr, Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates, J. Biomater. Appl. 28 (2013) pp.448-461.

DOI: 10.1177/0885328212460289

Google Scholar

[148] A.S. Stanislavov, L.F. Sukhodub, L.B. Sukhodub, V.N. Kuznetsov, K.L. Bychkov, M.I. Kravchenko, Structural features of hydroxyapatite and carbonated apatite formed under the influence of ultrasound and microwave radiation and their effect on the bioactivity of the nanomaterials, Ultrason. Sonochem. 42 (2018) pp.84-96.

DOI: 10.1016/j.ultsonch.2017.11.011

Google Scholar

[149] J. Barralet, J.C. Knowles, S. Best, W. Bonfield, Thermal decomposition of synthesised carbonate hydroxyapatite, J. Mater. Sci. Mater. Med. 13 (2002) pp.529-533.

Google Scholar

[150] A. Ślósarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods, J. Mol. Struct. 744-747 (2005) pp.657-661.

DOI: 10.1016/j.molstruc.2004.11.078

Google Scholar

[151] M.N. Muhammad Syazwan, M.N. Ahmad-Fauzi, W. Balestri, Y. Reinwald, B.I. Yanny Marliana, Effectiveness of various sintering aids on the densification and in vitro properties of carbonated hydroxyapatite porous scaffolds produced by foam replication technique, Mater. Today Commun. 27 (2021) 102395 pp.1-10.

DOI: 10.1016/j.mtcomm.2021.102395

Google Scholar

[152] S.P. Parthiban, I.Y. Kim, K. Kikuta, C. Ohtsuki, Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing, J. Mater. Sci. Mater. Med. 22 (2011) pp.209-216.

DOI: 10.1007/s10856-010-4201-7

Google Scholar

[153] M.R. Senra, R.B.d. Lima, D.d.H.S. Souza, M.d.F.V. Marques, S.N. Monteiro, Thermal characterization of hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens for bone graft, J. Mater. Res. Technol. 9 (2020) pp.7190-7200.

DOI: 10.1016/j.jmrt.2020.04.089

Google Scholar

[154] A.H. Verma, T.S.S. Kumar, K. Madhumathi, Y. Rubaiya, M. Ramalingan, M. Doble, Curcumin Releasing Eggshell Derived Carbonated Apatite Nanocarriers for Combined Anti-Cancer, Anti-Inflammatory and Bone Regenerative Therapy, J. Nanosci. Nanotechnol. 19 (2019) pp.6872-6880.

DOI: 10.1166/jnn.2019.16640

Google Scholar

[155] M.K. Ahmed, R. Al-Wafi, S.F. Mansour, S.I. El-dek, V. Uskoković, Physical and biological changes associated with the doping of carbonated hydroxyapatite/polycaprolactone core-shell nanofibers dually, with rubidium and selenite, J. Mater. Res. Technol. 9 (2020) pp.3710-3723.

DOI: 10.1016/j.jmrt.2020.01.108

Google Scholar

[156] M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskokovic, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous epsilon-polycaprolactone scaffolds for tissue engineering, Int. J. Pharm. 577 (2020) 118950 pp.1-13.

DOI: 10.1016/j.ijpharm.2019.118950

Google Scholar

[157] R.C. Moore, M.J. Rigali, P. Brady, Selenite sorption by carbonate substituted apatite, Environ. Pollut. 218 (2016) pp.1102-1107.

DOI: 10.1016/j.envpol.2016.08.063

Google Scholar

[158] J. Gao, J. Huang, R. Shi, J. Wei, X. Lei, Y. Dou, Y. Li, Y. Zuo, J. Li, Loading and Releasing Behavior of Selenium and Doxorubicin Hydrochloride in Hydroxyapatite with Different Morphologies, ACS Omega 6 (2021) pp.8365-8375.

DOI: 10.1021/acsomega.1c00092

Google Scholar

[159] V.M. Wu, M.K. Ahmed, M.S. Mostafa, V. Uskokovic, Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts, Mater. Sci. Eng. C. 117 (2020) 111257 pp.1-20.

DOI: 10.1016/j.msec.2020.111257

Google Scholar

[160] D. Liao, W. Zheng, X. Li, Q. Yang, X. Yue, L. Guo, G. Zeng, Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste, J. Hazard. Mater. 177 (2010) pp.126-130.

DOI: 10.1016/j.jhazmat.2009.12.005

Google Scholar

[161] H.S. Ragab, F.A. Ibrahim, F. Abdallah, A. A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, Synthesis and In Vitro Antibacterial Properties of Hydroxyapatite Nanoparticles, IOSR J. Pharm. Bio. Sci. 9 (2014) pp.77-85.

DOI: 10.9790/3008-09167785

Google Scholar

[162] K.P. Malla, S. Regmi, A. Nepal, S. Bhattarai, R.J. Yadav, S. Sakurai, R. Adhikari, Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone, Int. J. Biol. Macromol. 2020 (2020) 1690178 pp.1-10.

DOI: 10.1155/2020/1690178

Google Scholar

[163] R.-M. Ion, L. Iancu, G. Vasilievici, M. Grigore, R. Andrei, G.-I. Radu, R. Grigorescu, S. Teodorescu, I. Bucurica, M.-L. Ion, A. Gheboianu, C. Radulescu, I. Dulama, Ion-Substituted Carbonated Hydroxyapatite Coatings for Model Stone Samples, Coatings 9 (2019) pp.1-18.

DOI: 10.3390/coatings9040231

Google Scholar

[164] O. Frank-Kamenetskaya, A. Kol'tsov, M. Kuz'mina, M. Zorina, L. Poritskaya, Ion substitutions and non-stoichiometry of carbonated apatite-(CaOH) synthesised by precipitation and hydrothermal methods, J. Mol. Struct. 992 (2011) pp.9-18.

DOI: 10.1016/j.molstruc.2011.02.013

Google Scholar

[165] Ç.M. Oral, A. Çalışkan, D. Kapusuz, B. Ercan, Facile control of hydroxyapatite particle morphology by utilization of calcium carbonate templates at room temperature, Ceram. Int. 46 (2020) pp.21319-21327.

DOI: 10.1016/j.ceramint.2020.05.226

Google Scholar

[166] A. Jillavenkatesa, A. Jillavenkatesa, Sol–gel processing of hydroxyapatite, J. Mater. Sci. 33 (1998) pp.4111-4119.

DOI: 10.1023/a:1004436732282

Google Scholar

[167] Y. Guo, Y. Zhou, D. Jia, Fabrication of hydroxycarbonate apatite coatings with hierarchically porous structures, Acta Biomater. 4 (2008) pp.334-342.

DOI: 10.1016/j.actbio.2007.08.002

Google Scholar

[168] R. de Lima Barbosa, N. Rodrigues Santiago Rocha, E. Stellet Lourenco, V.H. de Souza Lima, E. Mavropoulos, R.C. Mello-Machado, C. Spiegel, C.F. Mourao, G.G. Alves, The Association of Nanostructured Carbonated Hydroxyapatite with Denatured Albumin and Platelet-Rich Fibrin: Impacts on Growth Factors Release and Osteoblast Behavior, J. Funct. Biomater. 15 (2024) pp.1-20.

DOI: 10.3390/jfb15010018

Google Scholar

[169] A.A. Forysenkova, I.V. Fadeeva, D.V. Deyneko, A.N. Gosteva, G.V. Mamin, D.V. Shurtakova, G.A. Davydova, V.G. Yankova, I.V. Antoniac, J.V. Rau, Polyvinylpyrrolidone-Alginate-Carbonate Hydroxyapatite Porous Composites for Dental Applications, Materials (Basel) 16 (2023) 4478 pp.1-16.

DOI: 10.3390/ma16124478

Google Scholar

[170] W. Xiao, B. Sonny Bal, M.N. Rahaman, Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo, Mater. Sci. Eng. C. 60 (2016) pp.324-332.

DOI: 10.1016/j.msec.2015.11.039

Google Scholar

[171] R. Ghosh, R. Sarkar, Hydroxyapatite based machinable bioceramic: An in depth investigation on drilling parameters and bioactivity, J. Alloys Compd. 723 (2017) pp.43-49.

DOI: 10.1016/j.jallcom.2017.06.191

Google Scholar

[172] T. Muthukumar, A. Aravinthan, J. Sharmila, N.S. Kim, J.H. Kim, Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K, Carbohydr. Polym. 152 (2016) pp.566-574.

DOI: 10.1016/j.carbpol.2016.07.003

Google Scholar

[173] P. O'Hare, B.J. Meenan, G.A. Burke, G. Byrne, D. Dowling, J.A. Hunt, Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique, Biomaterials 31 (2010) pp.515-522.

DOI: 10.1016/j.biomaterials.2009.09.067

Google Scholar

[174] I.H. Arita, V.M. Castano, D.S. Wilkinson, Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity, J. Mater. Sci. Mater. Med. 6 (1995) pp.19-23.

DOI: 10.1007/bf00121241

Google Scholar

[175] Y. Sun, Y. Chen, X. Ma, Y. Yuan, C. Liu, J. Kohn, J. Qian, Mitochondria-Targeted Hydroxyapatite Nanoparticles for Selective Growth Inhibition of Lung Cancer in Vitro and in Vivo, ACS Appl. Mater. Interfaces 8 (2016) pp.25680-25690.

DOI: 10.1021/acsami.6b06094

Google Scholar

[176] C. Zeitz, T. Faidt, S. Grandthyll, H. Hahl, N. Thewes, C. Spengler, J. Schmauch, M.J. Deckarm, C. Gachot, H. Natter, M. Hannig, F. Muller, K. Jacobs, Synthesis of Hydroxyapatite Substrates: Bridging the Gap between Model Surfaces and Enamel, ACS Appl. Mater. Interfaces 8 (2016) pp.25848-25855.

DOI: 10.1021/acsami.6b10089

Google Scholar

[177] Y. Huang, X. Zhang, A. Wu, H. Xu, An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering, RSC Adv. 6 (2016) pp.33529-33536.

DOI: 10.1039/c5ra26160k

Google Scholar

[178] S. Tang, B. Tian, Y.-J. Guo, Z.-A. Zhu, Y.-P. Guo, Chitosan/carbonated hydroxyapatite composite coatings: Fabrication, structure and biocompatibility, Surf. Coat. Technol. 251 (2014) pp.210-216.

DOI: 10.1016/j.surfcoat.2014.04.028

Google Scholar

[179] N. Roveri, E. Battistella, I. Foltran, E. Foresti, M. Iafisco, M. Lelli, B. Palazzo, L. Rimondini, Synthetic Biomimetic Carbonate-Hydroxyapatite Nanocrystals for Enamel Remineralization, Adv. Mat. Res. 47-50 (2008) pp.821-824.

DOI: 10.4028/www.scientific.net/amr.47-50.821

Google Scholar

[180] N.F. Mohammad, F.S.A. Fadzli, S.S.M. Saleh, C.W.S.R. Mohamad, M.A.A. Taib, Antibacterial Ability of Mesoporous Carbonated Hydroxyapatite, Journal of Physics: Conference Series 1372 (2019) pp.1-8.

DOI: 10.1088/1742-6596/1372/1/012081

Google Scholar

[181] M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4 (2011) pp.361-377.

Google Scholar

[182] F. Wang, Y. Guo, H. Wang, L. Yang, K. Wang, X. Ma, W. Yao, H. Zhang, Facile preparation of hydroxyapatite with a three dimensional architecture and potential application in water treatment, CrystEngComm 13 (2011) pp.5634-5637.

DOI: 10.1039/c1ce05485f

Google Scholar

[183] C. Dietrich, M. Hähsler, W. Wang, C. Kübel, S. Behrens, Designing Structurally Ordered Pt/Sn Nanoparticles in Ionic Liquids and their Enhanced Catalytic Performance, ChemNanoMat 6 (2020) pp.1854-1862.

DOI: 10.1002/cnma.202000433

Google Scholar

[184] B.O. Asimeng, E.K. Amenyaglo, D. Dodoo-Arhin, J.K. Efavi, B. Kwakye-Awuah, E.K. Tiburu, E.J. Foster, J. Czernuska, Snail Based Carbonated-Hydroxyapatite Material as Adsorbents for Water Iron (II), Materials (Basel) 15 (2022) pp.1-10.

DOI: 10.3390/ma15093253

Google Scholar

[185] O. Olabiyi, F. Adekola, Removal of Iron and Manganese from Aqueous Solution Using Hydroxyapatite Prepared from Cow Bone, Res. & Rev.: J. Mat. Sci. 6 (2) (2018) pp.1-18.

DOI: 10.4172/2321-6212.1000218

Google Scholar

[186] L. Gu, X. He, Z. Wu, Mesoporous hydroxyapatite: Preparation, drug adsorption, and release properties, Mater. Chem. Phys. 148 (2014) pp.153-158.

DOI: 10.1016/j.matchemphys.2014.07.024

Google Scholar

[187] L. El Hammari, R. Hamed, K. Azzaoui, S. Jodeh, S. Latifi, S. Saoiabi, O. Boukra, A. Krime, A. Boukra, A. Saoiabi, B. Hammouti, M.M. Khan, R. Sabbahi, G. Hanbali, A. Berisha, M. Taleb, O. Dagdag, Optimization of the adsorption of lead (II) by hydroxyapatite using a factorial design: Density functional theory and molecular dynamics, Front. Environ. Sci. 11 (2023) pp.1-17.

DOI: 10.3389/fenvs.2023.1112019

Google Scholar

[188] H. Xu, L. Yang, P. Wang, Y. Liu, M. Peng, Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite, J. Environ. Manage. 86 (2008) pp.319-328.

DOI: 10.1016/j.jenvman.2006.12.011

Google Scholar

[189] Y. Xing, S. Liu, X. Luo, W. Wan, J. Wan, T. Zhang, W. Chen, Q. Huang, Efficient immobilization of Cd2+ by nanoscale carbonate hydroxyapatite synthesized by ureolytic bacteria, J. Clean. Prod. 279 (2021) pp.1-10.

DOI: 10.1016/j.jclepro.2020.123619

Google Scholar

[190] P. Leinweber, U. Bathmann, U. Buczko, C. Douhaire, B. Eichler-Lobermann, E. Frossard, F. Ekardt, H. Jarvie, I. Kramer, C. Kabbe, B. Lennartz, P.E. Mellander, G. Nausch, H. Ohtake, J. Tranckner, Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P, Ambio 47 (2018) pp.3-19.

DOI: 10.1007/s13280-017-0968-9

Google Scholar

[191] M.E. Fleet, Carbonated Hydroxyapatite, First ed., Jenny Stanford Publishing, New York (2014).

Google Scholar

[192] M. Ammar, S. Ashraf, J. Baltrusaitis, Nutrient-Doped Hydroxyapatite: Structure, Synthesis and Properties, Ceramics 6 (2023) pp.1799-1825.

DOI: 10.3390/ceramics6030110

Google Scholar

[193] L. Iancu, R.M. Grigorescu, R.-M. Ion, M.E. David, L. Predoana, A.I. Gheboianu, E. Alexandrescu, New Triple Metallic Carbonated Hydroxyapatite for Stone Surface Preservation, Coatings 13 (2023) 1469 pp.1-18.

DOI: 10.3390/coatings13081469

Google Scholar

[194] Z. Xie, Z. Liu, Y. Wang, Z. Jin, Applied catalysis for sustainable development of chemical industry in China, Natl. Sci. Rev. 2 (2015) pp.167-182.

Google Scholar

[195] G. Cicek, E.A. Aksoy, C. Durucan, N. Hasirci, Alpha-tricalcium phosphate (alpha-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity, J. Mater. Sci. Mater. Med. 22 (2011) pp.809-817.

DOI: 10.1007/s10856-011-4283-x

Google Scholar

[196] M. Riaz, R. Zia, A. Ijaz, T. Hussain, M. Mohsin, A. Malik, Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity, Mater. Sci. Eng. C. 90(2018) pp.308-313.

DOI: 10.1016/j.msec.2018.04.076

Google Scholar

[197] Y. Lukina, L. Bionyshev-Abramov, S. Kotov, N. Serejnikova, D. Smolentsev, S. Sivkov, Carbonate-Hydroxyapatite Cement: The Effect of Composition on Solubility In Vitro and Resorption In Vivo, Ceramics 6 (2023) pp.1397-1414.

DOI: 10.3390/ceramics6030086

Google Scholar