[1]
Y. Guo and G. Yu, "Engineering Hydrogels for Efficient Solar Desalination and Water Purification," Accounts Mater. Res., vol. 2, no. 5, p.374–384, 2021.
DOI: 10.1021/accountsmr.1c00057
Google Scholar
[2]
Y. S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao, and S. Singamaneni, "Photothermal Membrane Water Treatment for Two Worlds," Acc. Chem. Res., vol. 52, no. 5, p.1215–1225, 2019.
DOI: 10.1021/acs.accounts.9b00012
Google Scholar
[3]
H. Setyawan, J. Juliananda, and W. Widiyastuti, "Engineering Materials to Enhance Light-To-Heat Conversion for Efficient Solar Water Purification," Ind. Eng. Chem. Res., vol. 61, no. 49, p.17783–17800, 2022.
DOI: 10.1021/acs.iecr.2c03170
Google Scholar
[4]
H. Ghasemi et al., "Solar steam generation by heat localization," Nat. Commun., vol. 5, 2014.
DOI: 10.1038/ncomms5449
Google Scholar
[5]
C. Song, Z. Jiang, X. Gu, H. Li, and J. Shi, "A bilayer solar evaporator with all-in-one design for efficient seawater desalination," J. Colloid Interface Sci., vol. 616, p.709–719, 2022.
DOI: 10.1016/j.jcis.2022.02.075
Google Scholar
[6]
M. Fauziyah, W. Widiyastuti, R. Balgis, and H. Setyawan, "Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications," Cellulose, vol. 26, no. 18, p.9583–9598, 2019.
DOI: 10.1007/s10570-019-02753-x
Google Scholar
[7]
R. Chen et al., "Interfacial solar heating by self-assembled Fe3O4@C film for steam generation," Mater. Chem. Front., vol. 1, no. 12, p.2620–2626, 2017.
DOI: 10.1039/c7qm00374a
Google Scholar
[8]
Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi, and G. Yu, "Biomass-Derived Hybrid Hydrogel Evaporators for Cost-Effective Solar Water Purification," Adv. Mater., vol. 32, no. 11, 2020.
DOI: 10.1002/adma.201907061
Google Scholar
[9]
T. Wang and Y. Zhao, "Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials," Carbohydr. Polym., vol. 253, no. August 2020, p.117225, 2021.
DOI: 10.1016/j.carbpol.2020.117225
Google Scholar
[10]
P. Nurlilasari, W. Widiyastuti, and H. Setyawan, "Novel monopolar arrangement of multiple iron electrodes for the large-scale production of magnetite nanoparticles for electrochemical reactors," Adv. Powder Technol., vol. 31, no. 3, p.1160–1168, 2020.
DOI: 10.1016/j.apt.2019.12.043
Google Scholar
[11]
K. O. Reddy, B. Ashok, K. R. N. Reddy, Y. E. Feng, J. Zhang, and A. V. Rajulu, "Extraction and Characterization of Novel Lignocellulosic Fibers From Thespesia Lampas Plant," Int. J. Polym. Anal. Charact., vol. 19, no. 1, p.48–61, 2014.
DOI: 10.1080/1023666X.2014.854520
Google Scholar
[12]
M. Kathirselvam, A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar, "Isolation and characterization of cellulose fibers from Thespesia populnea barks: A study on physicochemical and structural properties," Int. J. Biol. Macromol., vol. 129, p.396–406, 2019.
DOI: 10.1016/j.ijbiomac.2019.02.044
Google Scholar
[13]
J. Cai and L. Zhang, "Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions," Macromol. Biosci., vol. 5, no. 6, p.539–548, 2005.
DOI: 10.1002/mabi.200400222
Google Scholar
[14]
L. Alves, B. F. Medronho, F. E. Antunes, A. Romano, M. G. Miguel, and B. Lindman, "On the role of hydrophobic interactions in cellulose dissolution and regeneration: Colloidal aggregates and molecular solutions," Colloids Surfaces A Physicochem. Eng. Asp., vol. 483, p.257–263, 2015.
DOI: 10.1016/j.colsurfa.2015.03.011
Google Scholar
[15]
V.A.R. Baldanza et al., "Controlled-release fertilizer based on poly(butylene succinate)/urea /clay and its effect on lettuce growth," J. Appl. Polym. Sci., vol. 135, no. 47, p.51–60, 2018.
DOI: 10.1002/app.46858
Google Scholar
[16]
A.D. French, "Idealized powder diffraction patterns for cellulose polymorphs," Cellulose, vol. 21, no. 2, p.885–896, 2014.
DOI: 10.1007/s10570-013-0030-4
Google Scholar
[17]
C. Wan, Y. Jiao, S. Wei, L. Zhang, Y. Wu, and J. Li, "Functional nanocomposites from sustainable regenerated cellulose aerogels: A review," Chem. Eng. J., vol. 359, p.459–475, 2019.
DOI: 10.1016/j.cej.2018.11.115
Google Scholar
[18]
X. Chen, J. Chen, T. You, K. Wang, and F. Xu, "Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution," Carbohydr. Polym., vol. 125, p.85–91, 2015.
DOI: 10.1016/j.carbpol.2015.02.054
Google Scholar
[19]
M. Chen, X. Zhang, A. Zhang, C. Liu, and R. Sun, "Direct preparation of green and renewable aerogel materials from crude bagasse," Cellulose, vol. 23, no. 2, p.1325–1334, 2016.
DOI: 10.1007/s10570-015-0814-9
Google Scholar
[20]
R. Chen, Z. Wu, T. Zhang, T. Yu, and M. Ye, "Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating," RSC Adv., vol. 7, no. 32, p.19849–19855, 2017.
DOI: 10.1039/c7ra03007j
Google Scholar
[21]
F.K.K. Muzaffer A. Karaaslan, John F. Kadla, "Lignin-Based Aerogels," Lignin Polym. Compos., 2016.
Google Scholar
[22]
Zensu S., Dalimi R. Implementation of 100% electrical vehicle in Bali with the supply of potential Independent solar energy. MECHTA vol 3, no 1, 2022.
DOI: 10.21776/mechta.2022.003.01.10
Google Scholar