Utilization of Adsorbent Based on Rice Straw (Oryza sativa) for Cr(VI) Ions Reduction in Aqueous Solutions

Article Preview

Abstract:

In this study, we utilized an adsorbent based on rice straw for reducing hexavalent chromium ions (Cr (VI)) in an aqueous solution. The rice straw as adsorbent raw material was washed, dried, and powdered. Rice straw powder was heated at 450°C for 2 hours to obtain rice straw adsorbent. The adsorbent was activated with 1M H3PO4 for 4 hours. Characterization of the adsorbent was done using Fourier Transform Infra-Red (FTIR) method. FTIR spectra showed the presence of hydroxy, carboxylic, aromatic, and ether groups on the surface of the rice straw and the made adsorbent. The reduction of Cr (VI) ions in aqueous solutions was carried out using the adsorption batch method. The adsorption process was conducted in various the Cr (VI) solutions pH for 1-5 and variations in contact time for 5-720 minutes. The highest percentage reduction of Cr (VI) reached 66.90%. It has occurred at pH 2 and equilibrium at 600 minutes of contact time.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] D. P. Ordinartsev, N. V. Pechishcheva, S. Kh. Estemirova, A. V. Kim, and K. Yu. Shunyaev, 'Removal of Cr(VI) from wastewater by modified montmorillonite in combination with zero-valent iron', Hydrometallurgy, vol. 208, p.105813, Feb. 2022.

DOI: 10.1016/j.hydromet.2021.105813

Google Scholar

[2] L. Fan et al., 'Adsorption Removal of Cr(VI) with Activated Carbon Prepared by Co-pyrolysis of Rice Straw and Sewage Sludge with ZnCl2 Activation', Water. Air. Soil Pollut., vol. 230, no. 10, p.233, Oct. 2019.

DOI: 10.1007/s11270-019-4305-8

Google Scholar

[3] E. Vaiopoulou and P. Gikas, 'Effects of chromium on activated sludge and on the performance of wastewater treatment plants: A review', Water Res., vol. 46, no. 3, p.549–570, Mar. 2012.

DOI: 10.1016/j.watres.2011.11.024

Google Scholar

[4] A. M. Sulaiman, S. Mas'ud, A. N. Daroini, and P. Purnami, 'THE EFFECT OF ELECTRODE COATING FROM BISPHENOL-A-POLYCARBONATE CD-R WASTE FOR HYDROGEN PRODUCTION', Int. J. Mech. Eng. Technol. Appl., vol. 4, no. 1, p.10–21, Jan. 2023.

DOI: 10.21776/MECHTA.2023.004.01.2

Google Scholar

[5] E. I. Rhofita, R. Rachmat, M. Mayer, and L. Montastruc, 'An Energy Potential Estimation of Rice Residue in Indonesia: A Case Study in East Java', IOP Conf. Ser. Earth Environ. Sci., vol. 1024, no. 1, p.012029, May 2022.

DOI: 10.1088/1755-1315/1024/1/012029

Google Scholar

[6] E. S. Elmolla, W. Hamdy, A. Kassem, and A. Abdel Hady, 'Comparison of different rice straw based adsorbents for chromium removal from aqueous solutions', Desalination Water Treat., vol. 57, no. 15, p.6991–6999, Mar. 2016.

DOI: 10.1080/19443994.2015.1015175

Google Scholar

[7] X. Huang, X. Sheng, Y. Guo, Y. Sun, P. Fatehi, and H. Shi, 'Rice straw derived adsorbent for fast and efficient phosphate elimination from aqueous solution', Ind. Crops Prod., vol. 184, p.115105, Sep. 2022.

DOI: 10.1016/j.indcrop.2022.115105

Google Scholar

[8] H. R. Robles-Jimarez et al., 'New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: Process sustainability and scale-up possibilities', Sci. Total Environ., vol. 805, p.150317, Jan. 2022.

DOI: 10.1016/j.scitotenv.2021.150317

Google Scholar

[9] A. K. Sakhiya, V. K. Vijay, and P. Kaushal, 'Efficacy of rice straw derived biochar for removal of Pb+2 and Zn+2 from aqueous: Adsorption, thermodynamic and cost analysis', Bioresour. Technol. Rep., vol. 17, p.100920, Feb. 2022.

DOI: 10.1016/j.biteb.2021.100920

Google Scholar

[10] A. M. Adel, S. Kamel, and M. El-Sakhawy, 'Rice straw charcoal: Characterization and adsorption of Pb2+ from aqueous solution', Environ. Sci., p.10, 2013.

Google Scholar

[11] Z. Chen, X. Xiao, B. Chen, and L. Zhu, 'Quantification of Chemical States, Dissociation Constants and Contents of Oxygen-containing Groups on the Surface of Biochars Produced at Different Temperatures', Environ. Sci. Technol., vol. 49, no. 1, p.309–317, Jan. 2015.

DOI: 10.1021/es5043468

Google Scholar

[12] X. Xiao, B. Chen, and L. Zhu, 'Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures', Environ. Sci. Technol., vol. 48, no. 6, p.3411–3419, Mar. 2014.

DOI: 10.1021/es405676h

Google Scholar

[13] J. Zhou, H. Chen, R. W. Thring, and J. M. Arocena, 'Chemical Pretreatment of Rice Straw Biochar: Effect on Biochar Properties and Hexavalent Chromium Adsorption', Int. J. Environ. Res., vol. 13, no. 1, p.91–105, Feb. 2019.

DOI: 10.1007/s41742-018-0156-1

Google Scholar

[14] E. Farahmand, 'Adsorption of Cerium (IV) from Aqueous Solutions Using Activated Carbon Developed from Rice Straw', Open J. Geol., vol. 06, no. 03, p.189–200, 2016.

DOI: 10.4236/ojg.2016.63017

Google Scholar

[15] L. Fan et al., 'Adsorption Removal of Cr(VI) with Activated Carbon Prepared by Co-pyrolysis of Rice Straw and Sewage Sludge with ZnCl2 Activation', Water. Air. Soil Pollut., vol. 230, no. 10, p.233, Oct. 2019.

DOI: 10.1007/s11270-019-4305-8

Google Scholar

[16] H. Gao, Y. Liu, G. Zeng, W. Xu, T. Li, and W. Xia, 'Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—Rice straw', J. Hazard. Mater., vol. 150, no. 2, p.446–452, Jan. 2008.

DOI: 10.1016/j.jhazmat.2007.04.126

Google Scholar

[17] H. Ma, J. Yang, X. Gao, Z. Liu, X. Liu, and Z. Xu, 'Removal of chromium (VI) from water by porous carbon derived from corn straw: Influencing factors, regeneration and mechanism', J. Hazard. Mater., vol. 369, p.550–560, May 2019.

DOI: 10.1016/j.jhazmat.2019.02.063

Google Scholar

[18] Z. Wang, J. Wu, T. He, and J. Wu, 'Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor', Bioresour. Technol., vol. 167, p.551–554, Sep. 2014.

DOI: 10.1016/j.biortech.2014.05.123

Google Scholar

[19] M. Zięzio, B. Charmas, K. Jedynak, M. Hawryluk, and K. Kucio, 'Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid(V)', Appl. Nanosci., vol. 10, no. 12, p.4703–4716, Dec. 2020.

DOI: 10.1007/s13204-020-01419-6

Google Scholar

[20] V. Fierro, G. Muñiz, A. H. Basta, H. El-Saied, and A. Celzard, 'Rice straw as precursor of activated carbons: Activation with ortho-phosphoric acid', J. Hazard. Mater., vol. 181, no. 1–3, p.27–34, Sep. 2010.

DOI: 10.1016/j.jhazmat.2010.04.062

Google Scholar

[21] S. Mashhadi et al., 'Rapid removal of Hg (II) from aqueous solution by rice straw activated carbon prepared by microwave-assisted H2SO4 activation: Kinetic, isotherm and thermodynamic studies', J. Mol. Liq., vol. 215, p.144–153, Mar. 2016.

DOI: 10.1016/j.molliq.2015.12.040

Google Scholar

[22] W.-T. Tan, H. Zhou, S.-F. Tang, P. Zeng, J.-F. Gu, and B.-H. Liao, 'Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides', Environ. Pollut., vol. 300, p.118899, May 2022.

DOI: 10.1016/j.envpol.2022.118899

Google Scholar

[23] R. Kumar, D. K. Arya, N. Singh, and H. K. Vats, 'Removal of Cr (VI) Using Low Cost Activated Carbon Developed By Agricultural Waste', IOSR J. Appl. Chem., vol. 10, no. 01, p.76–79, Jan. 2017.

DOI: 10.9790/5736-1001017679

Google Scholar

[24] C. A. Weemaes, V. Ooms, A. M. Van Loey, and M. E. Hendrickx, 'Kinetics of Chlorophyll Degradation and Color Loss in Heated Broccoli Juice', J. Agric. Food Chem., vol. 47, no. 6, p.2404–2409, Jun. 1999.

DOI: 10.1021/jf980663o

Google Scholar

[25] M. J. Saad et al., 'Physical and Chemical Properties of the Rice Straw Activated Carbon Produced from Carbonization and KOH Activation Processes', Sains Malays., vol. 48, no. 2, p.385–391, Feb. 2019.

DOI: 10.17576/jsm-2019-4802-16

Google Scholar

[26] T. Lin et al., 'Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study.', Chem. Eng. J., vol. 239, p.114–122, 2014.

DOI: 10.1016/j.cej.2013.10.104

Google Scholar

[27] L. Anah and N. Astrini, 'Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent', IOP Conf. Ser. Earth Environ. Sci., vol. 60, p.012010, Mar. 2017.

DOI: 10.1088/1755-1315/60/1/012010

Google Scholar

[28] J. Valentín-Reyes, R. B. García-Reyes, A. García-González, E. Soto-Regalado, and F. Cerino-Córdova, 'Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons', J. Environ. Manage., vol. 236, p.815–822, Apr. 2019.

DOI: 10.1016/j.jenvman.2019.02.014

Google Scholar

[29] Ş. Parlayici and E. Pehlivan, 'Comparative study of Cr(VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic', J. Anal. Sci. Technol., vol. 10, no. 1, p.15, Dec. 2019.

DOI: 10.1186/s40543-019-0175-3

Google Scholar

[30] H. P. Singh, P. Mahajan, S. Kaur, D. R. Batish, and R. K. Kohli, 'Chromium toxicity and tolerance in plants', Environ. Chem. Lett., vol. 11, no. 3, p.229–254, Sep. 2013.

DOI: 10.1007/s10311-013-0407-5

Google Scholar