[1]
A. Ghofur, D. A. Rachman, M. M. Lutfi, and F. Rahman, "The Influence of Leachate Water on Corrosion Rate of Mild Steel Plate," no. 7, p.137–143, 2021, [Online]. Available: https://doi.org/10.21776/MECHTA.2021.002.02.7%0D.
DOI: 10.21776/mechta.2021.002.02.7
Google Scholar
[2]
G. J. F. Cruz et al., "Composites of ZnO nanoparticles and biomass based activated carbon: Adsorption, photocatalytic and antibacterial capacities," Water Sci. Technol., vol. 2017, no. 2, p.492–508, 2017.
DOI: 10.2166/wst.2018.176
Google Scholar
[3]
X. Tang, G. Ran, J. Li, Z. Zhang, and C. Xiang, "Extremely efficient and rapidly adsorb methylene blue using porous adsorbent prepared from waste paper: Kinetics and equilibrium studies," J. Hazard. Mater., vol. 402, no. April 2020, p.123579, 2021.
DOI: 10.1016/j.jhazmat.2020.123579
Google Scholar
[4]
J. Yu et al., "Eco-friendly and facile one-step synthesis of a three dimensional net-like magnetic mesoporous carbon derived from wastepaper as a renewable adsorbent," RSC Adv., vol. 9, no. 22, p.12419–12427, 2019.
DOI: 10.1039/c9ra01332f
Google Scholar
[5]
S. N. Shintre, S. Wadhai, and P. Thakur, "Synthesis of Ag/ZnO-AC composite photocatalyst: spectroscopic investigation, parameter optimization, synergistic effect and performance enhancement for cost-effective photocatalytic degradation of phenols and dyes," Water Sci. Technol., vol. 85, no. 9, p.2663–2681, 2022.
DOI: 10.2166/wst.2022.137
Google Scholar
[6]
D. Ozdemir, "Production of activated carbon from the waste paper by chemical activation method," vol. 07, p.52–61, 2023.
DOI: 10.35860/iarej.1222591
Google Scholar
[7]
M. Manurung, O. Ratnayani, and R. A. Prawira, "Sintesis dan Karakterisasi Arang dari Limbah Bambu," Cakra Kim., vol. 7, no. 1, p.69–77, 2019, [Online]. Available: https://ojs.unud.ac.id/index.php/cakra/article/view/51644/30624
Google Scholar
[8]
C. Z. Zaman et al., "Pyrolysis: A Sustainable Way to Generate Energy from Waste," Pyrolysis, p.3–36, 2017.
DOI: 10.5772/intechopen.69036
Google Scholar
[9]
D. Zhou et al., "Activated carbons prepared via reflux-microwave-assisted activation approach with high adsorption capability for methylene blue," J. Environ. Chem. Eng., vol. 9, no. 1, p.104671, 2021.
DOI: 10.1016/j.jece.2020.104671
Google Scholar
[10]
W. Hu et al., "Waste phenolic resin derived activated carbon by microwave-assisted KOH activation and application to dye wastewater treatment," Green Process. Synth., p.408–415, 2019.
DOI: 10.1515/gps-2019-0008
Google Scholar
[11]
F. Lin et al., "Real-time monitoring the carbonization and activation process of activated carbon prepared from Chinese parasol via zinc chloride activation," J. Anal. Appl. Pyrolysis, vol. 155, no. February, p.105089, 2021.
DOI: 10.1016/j.jaap.2021.105089
Google Scholar
[12]
N. Isoda et al., "Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design," Powder Technol., vol. 256, p.175–181, 2014.
DOI: 10.1016/j.powtec.2014.02.029
Google Scholar
[13]
S. H. Abro, H. A. Moria, M. N. Alghamdi, A. Z. Al-Khazaal, and S. Saad-Ul-Haque, "Development and Characterization of Antibacterial Activated Carbon Composite of Zinc and Oxide for Water Filtration as an Industrial Application," Pakistan J. Sci. Ind. Res. Ser. A Phys. Sci., vol. 63, no. 3, p.162–167, 2020.
DOI: 10.52763/pjsir.phys.sci.63.3.2020.162.167
Google Scholar
[14]
I. Velo-Gala, J. J. López-Peñalver, M. Sánchez-Polo, and J. Rivera-Utrilla, "Activated carbon as photocatalyst of reactions in aqueous phase," Appl. Catal. B Environ., vol. 142–143, p.694–704, 2013.
DOI: 10.1016/j.apcatb.2013.06.003
Google Scholar
[15]
M. Julita, M. Shiddiq, and M. Khair, "Determination of Band Gap Energy of ZnO/Au Nanoparticles Resulting in Laser Ablation in Liquid," Indones. J. Chem. Res., vol. 10, no. 2, p.83–87, 2022.
DOI: 10.30598//ijcr.2022.10-mar
Google Scholar
[16]
K. Kusdianto, T. D. Sari, M. A. Laksono, S. Madhania, and S. Winardi, "Fabrication and application of ZnO-Ag nanocomposite materials prepared by gas-phase methods," IOP Conf. Ser. Mater. Sci. Eng., vol. 1053, no. 1, p.012023, 2021.
DOI: 10.1088/1757-899x/1053/1/012023
Google Scholar
[17]
X. Zhang et al., "Carbon-Doped ZnO Nanostructures: Facile Synthesis and Visible Light Photocatalytic Applications," J. Phys. Chem. C, vol. 119, no. 35, p.20544–20554, 2015.
DOI: 10.1021/acs.jpcc.5b07116
Google Scholar
[18]
M. Vinayagam, S. Ramachandran, V. Ramya, and A. Sivasamy, "Photocatalytic degradation of orange G dye using ZnO/biomass activated carbon nanocomposite," J. Environ. Chem. Eng., vol. 6, no. 3, p.3726–3734, 2018.
DOI: 10.1016/j.jece.2017.06.005
Google Scholar
[19]
Rahmi and Lelifajri, "Influence of heat treatment on eggshell particles as low cost adsorbent for methylene blue removal from aqueous solution," Rasayan J. Chem., vol. 10, no. 2, p.634–642, 2017.
DOI: 10.7324/RJC.2017.1021736
Google Scholar
[20]
A. Kajbafvala, H. Ghorbani, A. Paravar, J. P. Samberg, E. Kajbafvala, and S. K. Sadrnezhaad, "Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods," Superlattices Microstruct., vol. 51, no. 4, p.512–522, 2012.
DOI: 10.1016/j.spmi.2012.01.015
Google Scholar
[21]
F. Cicconi, V. Lazic, A. Palucci, A. C. A. Assis, and F. S. Romolo, "Forensic analysis of commercial inks by laser-induced breakdown spectroscopy (LIBS)," Sensors (Switzerland), vol. 20, no. 13, p.1–20, 2020.
DOI: 10.3390/s20133744
Google Scholar
[22]
S. Arya et al., "Review—Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles," ECS J. Solid State Sci. Technol., vol. 10, no. 2, p.023002, 2021.
DOI: 10.1149/2162-8777/abe095
Google Scholar
[23]
K. Kusdianto, W. Widiyastuti, M. Shimada, T. Nurtono, S. Machmudah, and S. Winardi, "Photocatalytic Activity of ZnO-Ag Nanocomposites Prepared by a One-step Process using Flame Pyrolysis," Int. J. Technol., vol. 10, no. 3, p.571–581, May 2019.
DOI: 10.14716/ijtech.v10i3.2902
Google Scholar
[24]
S. Speakman, "Estimating Crystallite Size Using XRD (MIT Center for Materials Science and Engineering," Estim. Cryst. Size Using XRD (MIT Cent. Mater. Sci. Eng., p.5–15, 2008, [Online]. Available: http://prism.mit.edu/XRAY/oldsite/CrystalSize%0AAnalysis.pdf
Google Scholar
[25]
U. G. Akpan and B. H. Hameed, "Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review," J. Hazard. Mater., vol. 170, no. 2–3, p.520–529, 2009.
DOI: 10.1016/j.jhazmat.2009.05.039
Google Scholar
[26]
M. A. Fagier, "Plant-Mediated Biosynthesis and Photocatalysis Activities of Zinc Oxide Nanoparticles: A Prospect towards Dyes Mineralization," J. Nanotechnol., vol. 2021, 2021.
DOI: 10.1155/2021/6629180
Google Scholar
[27]
I. Khan et al., "Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation," Water (Switzerland), vol. 14, no. 2, 2022.
DOI: 10.3390/w14020242
Google Scholar