[1]
Sun, G., Bao, C., Liu, W., & Fang, Y. Cyclic behavior of an innovative braced ductile thin shear panel. Structures, 32 (2021), 973–986.
DOI: 10.1016/j.istruc.2021.03.075
Google Scholar
[2]
Emami, F., Mofid, M., & Vafai, A. Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls. Engineering Structures, 48 (2013), 750–762.
DOI: 10.1016/j.engstruct.2012.11.028
Google Scholar
[3]
Atlayan, O., & Charney, F. A. Hybrid buckling-restrained braced frames. Journal of Constructional Steel Research, 96 (2014), 95–105.
DOI: 10.1016/j.jcsr.2014.01.001
Google Scholar
[4]
Farzampour, A., Laman, J. A., & Mofid, M. Behavior prediction of corrugated steel plate shear walls with openings. Journal of Constructional Steel Research, 114 (2015), 258–268.
DOI: 10.1016/j.jcsr.2015.07.018
Google Scholar
[5]
Wei, M.-W., Liew, J. Y. R., Xiong, M.-X., & Fu, X.-Y. Hysteresis model of a novel partially connected buckling-restrained steel plate shear wall. Journal of Constructional Steel Research, 125 (2016), 74–87.
DOI: 10.1016/j.jcsr.2016.06.006
Google Scholar
[6]
Rahnavard, R., Hassanipour, A., Suleiman, M., & Mokhtari, A. Evaluation of eccentrically braced frames with single and double shear panels. Journal of Building Engineering, 10 (2017), 13–25.
DOI: 10.1016/j.jobe.2017.01.006
Google Scholar
[7]
Dou, C., Pi, Y.-L., & Gao, W. Shear resistance and post-buckling behavior of corrugated panels in steel plate shear walls. Thin-Walled Structures, 131 (2018), 816–826.
DOI: 10.1016/j.tws.2018.07.039
Google Scholar
[8]
Tapia-Hernández, E., & García-Carrera, S. Inelastic response of ductile eccentrically braced frames. Journal of Building Engineering, 26 (2019), 100903.
DOI: 10.1016/j.jobe.2019.100903
Google Scholar
[9]
Emamyari, A., Sheidaii, M. R., Kookalanifar, A., Showkati, H., & Akbarzadeh, N. Experimental study on cyclic behavior of stiffened perforated steel shear panels. Structures, 27 (2020), 2400–2410.
DOI: 10.1016/j.istruc.2020.08.027
Google Scholar
[10]
Yossef, N. M. A new approach to estimate the shear strength of curved corrugated steel webs. Structures, 24 (2020), 400–414.
DOI: 10.1016/j.istruc.2020.01.028
Google Scholar
[11]
Sun, G., & Zhu, Y. Cyclic testing of an innovative self-centering X-braced ductile shear panel. Engineering Structures, 244 (2021), 112732.
DOI: 10.1016/j.engstruct.2021.112732
Google Scholar
[12]
Feng, L., Sun, T., & Ou, J. Elastic buckling analysis of steel-strip-stiffened trapezoidal corrugated steel plate shear walls. Journal of Constructional Steel Research, 184 (2021), 106833.
DOI: 10.1016/j.jcsr.2021.106833
Google Scholar
[13]
Li, Z., Ge, L., Qi, Y., Geng, Y., & Teng, J. Design and experimental study of a buckling-restrained steel plate shear wall with novel panels for enhanced capacity and energy dissipation. Engineering Structures, 244 (2021), 112812.
DOI: 10.1016/j.engstruct.2021.112812
Google Scholar
[14]
Quan, C., Wang, W., Li, Y., & Lu, Z. Cyclic behavior of demountable metallic corrugated shear panel dampers. Journal of Building Engineering, 61 (2022), 105228.
DOI: 10.1016/j.jobe.2022.105228
Google Scholar
[15]
Yu, Y., Lin, S., Zhao, F., Tian, P., & Jiang, L. A built-up type horizontally corrugated steel plate shear wall with a special shape. Engineering Structures, 250 (2022), 113458.
DOI: 10.1016/j.engstruct.2021.113458
Google Scholar
[16]
Quan, C., Wang, W., & Li, Y. Hysteretic model and resilient application of corrugated shear panel dampers. Thin-Walled Structures, 178 (2022), 109477.
DOI: 10.1016/j.tws.2022.109477
Google Scholar
[17]
Sun, H.-J., Guo, Y.-L., Wen, C.-B., & Zuo, J.-Q. Local and global buckling prevention design of corrugated steel plate shear walls. Journal of Building Engineering, 68 (2023), 106055.
DOI: 10.1016/j.jobe.2023.106055
Google Scholar
[18]
Wen, C.-B., Guo, Y.-L., Zuo, J.-Q., & Sun, H.-J. Global shear stability capacity of trapezoidally corrugated steel plate shear walls with boundary elements. Journal of Building Engineering, 72 (2023), 106553.
DOI: 10.1016/j.jobe.2023.106553
Google Scholar
[19]
Li, Y., Wang, W., Su, S., Quan, C., Xu, J., Jia, Y., & Mi, J. Seismic performance assessment of eccentrically braced steel frames using demountable metallic corrugated shear panel dampers. Journal of Constructional Steel Research, 207 (2023), 107972.
DOI: 10.1016/j.jcsr.2023.107972
Google Scholar
[20]
Xiang, Y., Zhou, X., Shi, Y., Zhou, J., Ke, K., & Deng, F. Seismic performance of cold-formed thin-walled steel frames with K-shaped braced shear panels. Thin-Walled Structures, 184 (2023), 110449.
DOI: 10.1016/j.tws.2022.110449
Google Scholar
[21]
Xiang, Y., Zhou, X., Ke, K., Shi, Y., & Xu, L. Experimental research on the seismic performance of cold-formed thin-walled steel frames with braced shear panels. Thin-Walled Structures, 182 (2023), 110210.
DOI: 10.1016/j.tws.2022.110210
Google Scholar
[22]
Gusella, F., Mei, A., & Orlando, M. An innovative ductile bracing system easily repairable after a seismic event. Procedia Structural Integrity, 44 (2023), 790–797.
DOI: 10.1016/j.prostr.2023.01.103
Google Scholar