p.1
p.11
p.37
p.63
p.75
p.97
p.107
p.115
p.127
Energetic and economic viability of full-scale pressure retarded osmosis for blue power generation in the Philippines
Abstract:
Salinity gradient power (SGP), also known as blue energy, represents a promising renewable energy (RE) source that can diversify global RE portfolios and address energy security challenges. The Philippines, with its extensive network of estuaries where river outflows meet the sea, offers a strategic opportunity for deploying SGP technologies like the pressure retarded osmosis (PRO). PRO utilizes the osmotic energy produced when freshwater diffuses through a semi-permeable membrane into seawater, generating pressurized flow that can drive turbines for electricity generation. This paper explores the energetic and economic feasibility of stand-alone PRO-based power generation in the Philippines, highlighting its potential to support the country’s transition to RE. The work employed a process simulation that integrates unit operation models with mass and energy streams. Key economic indicators were evaluated, including net present value (NPV) for total project feasibility, internal rate of return (IRR) for the annualized return rate, and discounted payback period (DPP) for the time needed to recover investments. The levelized cost of PRO energy (LCOE), reflecting the lifetime cost per kWh produced, was compared against benchmarks from other RE sources. Results indicate the viability of PRO, demonstrating a positive NPV at a 10% discount rate, with a 7-year DPP and an IRR of 12.16%. The study found that the LCOE value of $0.17 per kWh, using cellulose triacetate membranes with approximately 90% efficiency, is cost-competitive with other RE sources. However, advancements in membrane properties, particularly durability and water permeability, are essential to improving both cost-effectiveness and scalability of PRO power plants. This investigation emphasizes the potential of blue energy as a RE source uniquely suited to archipelagic countries like the Philippines. By prioritizing innovation in membrane technology, PRO can transition from an emerging technology to a cornerstone of sustainable energy strategies, aligning with global carbonization efforts.
Info:
Periodical:
Pages:
37-61
DOI:
Citation:
Online since:
January 2026
Permissions:
Citation:
* - Corresponding Author
[1] Department of Energy, Philippine Energy Plan: Transitioning to Reliable, Clean and Resilient Energy (Volume 1), 2023. https://doe.gov.ph/sites/default/files/pdf/pep/PEP_2023-2050_%28Volume_I%29.pdf (accessed October 28, 2024).
[2] T.Q. Donaghy, N. Healy, C.Y. Jiang, C.P. Battle, Fossil fuel racism in the United States: How phasing out coal, oil, and gas can protect communities, Energy Res Soc Sci 100 (2023) 103104.
[3] International Renewable Energy Agency (IRENA), Tripling renewable power and doubling energy efficiency by 2023: Crucial steps toward 1.5 C, (2023).
[4] I. Gwayi, S.P. Ayeng'o, C.Z.M. Kimambo, Selection of electrochemical and electrical energy storage systems for off-grid renewable energy mini-grids: A review, Clean Eng Technol 25 (2025) 100906.
[5] Y. Jiao, D. Månsson, Greenhouse gas emissions from hybrid energy storage systems in future 100% renewable power systems – A Swedish case based on consequential life cycle assessment, J Energy Storage 57 (2023) 106167.
[6] A. Emdadi, P. Gikas, M. Farazaki, Y. Emami, Salinity gradient energy potential at the hyper saline Urmia Lake – ZarrinehRud River system in Iran, Renew Energy 86 (2016) 154–162.
[7] S. AL Mashrafi, N. Diaz-Elsayed, J. Benjamin, M.E. Arias, Q. Zhang, An environmental and economic sustainability assessment of a pressure retarded osmosis system, Desalination 537 (2022) 115869.
[8] J. Lee, Y. Shin, J. Kim, S. Hong, Feasibility and challenges of high-pressure pressure retarded osmosis applications utilizing seawater and hypersaline water sources, Desalination 581 (2024) 117578.
[9] T. Withers, S.P. Neill, Salinity Gradient Power, Comprehensive Renewable Energy, Second Edition: Volume 1-9 1–8 (2022) 50–79.
[10] M. Essalhi, A. Halil Avci, F. Lipnizki, N. Tavajohi, The potential of salinity gradient energy based on natural and anthropogenic resources in Sweden, Renew Energy 215 (2023) 118984.
[11] X. Zhou, W. Bin Zhang, J.J. Li, X. Bao, X.W. Han, M. Myintzu Theint, X.J. Ma, An electrochemical system for salinity gradient energy harvesting, Energy Convers Manag 255 (2022) 115315.
[12] M.K. Purkait, M. Sharma, P.P. Das, C.-T. Chang, Potential for power production using salinity gradients, Blue Energy Extraction Using Salinity Gradients (2024) 1–26.
[13] M. Sharma, P.P. Das, A. Chakraborty, M.K. Purkait, Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review, Sustainable Energy Technologies and Assessments 49 (2022) 101687.
[14] S. Chae, H. Kim, J. Gi Hong, J. Jang, M. Higa, M. Pishnamazi, J.Y. Choi, R. Chandula Walgama, C. Bae, I.S. Kim, J.S. Park, Clean power generation from salinity gradient using reverse electrodialysis technologies: Recent advances, bottlenecks, and future direction, Chemical Engineering Journal 452 (2023) 139482.
[15] M. Malankowska, Z. Su, K. Karlsen, M. Flaskjær Buhl, H. Guo, L.S. Pedersen, M. Pinelo, Novel membrane modifications for pressure retarded osmosis as a new way for sustainable power generation from salinity gradients, Chem Eng Sci 297 (2024) 120221.
[16] O.A.H. AL-Musawi, A.W. Mohammad, H.B. Mahood, E. Mahmoudi, W.L. Ang, A.A.H. Kadhum, Energy Comparison and Cost Estimation of Pressure-Retarded Osmosis Using Spiral Wound Membrane, Desalination Water Treat (2024) 100732.
[17] Q.A. Khasawneh, B. Tashtoush, A. Nawafleh, B. Kan'an, Techno-Economic Feasibility Study of a Hypersaline Pressure-Retarded Osmosis Power Plants: Dead Sea–Red Sea Conveyor, Energies (Basel) 11 (2018) 3118.
DOI: 10.3390/en11113118
[18] K. Matsuyama, R. Makabe, T. Ueyama, H. Sakai, K. Saito, T. Okumura, H. Hayashi, A. Tanioka, Power generation system based on pressure retarded osmosis with a commercially-available hollow fiber PRO membrane module using seawater and freshwater, Desalination 499 (2021) 114805.
[19] E.I. Obode, A. Badreldin, S. Adham, M. Castier, A. Abdel-Wahab, Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants, Energies (Basel) 16 (2022) 325.
DOI: 10.3390/en16010325
[20] D. Dardor, M. Al Maas, J. Minier-Matar, A. Janson, A. Abdel-Wahab, H.K. Shon, S. Adham, Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry, Desalination 516 (2021) 115219.
[21] G. O'Toole, L. Jones, C. Coutinho, C. Hayes, M. Napoles, A. Achilli, River-to-sea pressure retarded osmosis: Resource utilization in a full-scale facility, Desalination 389 (2016) 39–51.
[22] M. Tagliavini, M.U. Babler, Simulation of spiral-wound pressure retarded osmosis for harvesting osmotic power: Module-level modeling and implications of feed pre-treatment, Desalination 574 (2024) 117184.
[23] T.M. Mansour, T.M. Ismail, K. Ramzy, M. Abd El-Salam, Energy recovery system in small reverse osmosis desalination plant: Experimental and theoretical investigations, Alexandria Engineering Journal 59 (2020) 3741–3753.
[24] A. Naghiloo, M. Abbaspour, B. Mohammadi-Ivatloo, K. Bakhtari, Modeling and design of a 25 MW osmotic power plant (PRO) on Bahmanshir River of Iran, Renew Energy 78 (2015) 51–59.
[25] M. Malankowska, Z. Su, K. Karlsen, M. Flaskjær Buhl, H. Guo, L.S. Pedersen, M. Pinelo, Novel membrane modifications for pressure retarded osmosis as a new way for sustainable power generation from salinity gradients, Chem Eng Sci 297 (2024) 120221.
[26] S.N. Rahman, H. Saleem, S.J. Zaidi, Progress in membranes for pressure retarded osmosis application, Desalination 549 (2023) 116347.
[27] J.H. Low, J. Zhang, W.P. Li, T. Yang, C.F. Wan, F. Esa, M.S. Qua, K. Mottaiyan, S. Murugan, M. Aiman, A. Dhalla, T.S. Chung, C. Gudipati, Industrial scale thin-film composite membrane modules for salinity-gradient energy harvesting through pressure retarded osmosis, Desalination 548 (2023) 116217.
[28] Y. Kim, G. Lee, J. Byun, S. ho Lim, S. Lee, Y.G. Park, Optimizing energy efficiency in desalination: Performance evaluation of seawater reverse osmosis and pressure retarded osmosis hybrid systems, Desalination 601 (2025) 118557.
[29] S.J. Moon, S.M. Lee, J.H. Kim, S.H. Park, H.H. Wang, J.H. Kim, Y.M. Lee, A highly robust and water permeable thin film composite membranes for pressure retarded osmosis generating 26 W·m−2 at 21 bar, Desalination 483 (2020) 114409.
[30] A. Shadravan, M. Amani, A. Jantrania, Feasibility of thin film nanocomposite membranes for clean energy using pressure retarded osmosis and reverse electrodialysis, Energy Nexus 7 (2022) 100141.
[31] W. Gai, D.L. Zhao, T.S. Chung, Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation, J Memb Sci 551 (2018) 94–102.
[32] Y. Shi, M. Zhang, H. Zhang, F. Yang, C.Y. Tang, Y. Dong, Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review, Water Res 189 (2021) 116666.
[33] M. Javadi Azad, A.R. Pouranfard, D. Emadzadeh, W.J. Lau, E. Alipanahpour Dil, Simulation of forward osmosis and pressure retarded osmosis membrane performance: Effect of TiO2 nanoparticles loading on the semi-permeable membrane, Comput Chem Eng 160 (2022) 107709.
[34] Y.Y. Liang, Review of analytical and numerical modeling for pressure retarded osmosis membrane systems, Desalination 560 (2023) 116655.
[35] F.J. Aschmoneit, C. Hélix-Nielsen, Submerged-helical module design for pressure retarded osmosis:A conceptual study using computational fluid dynamics, J Memb Sci 620 (2021) 118704.
[36] G. Han, S. Zhang, X. Li, T.S. Chung, Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation, Prog Polym Sci 51 (2015) 1–27.
[37] S. Yagnambhatt, S. Khanmohammadi, J. Maisonneuve, Demonstration of a real-time maximum power point tracker for salt gradient osmotic power systems, Appl Energy 376 (2024) 124205.
[38] A. Shadravan, M. Amani, A. Jantrania, Feasibility of thin film nanocomposite membranes for clean energy using pressure retarded osmosis and reverse electrodialysis, Energy Nexus 7 (2022) 100141.
[39] F. Helfer, C. Lemckert, Y.G. Anissimov, Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review, J Memb Sci 453 (2014) 337–358.
[40] H.W. Chung, J. Swaminathan, L.D. Banchik, J.H. Lienhard, Economic framework for net power density and levelized cost of electricity in pressure-retarded osmosis, Desalination 448 (2018) 13–20.
[41] D. Li, Z. Mo, A.G. Fane, Q. She, A multifunctional desalination-osmotic energy storage (DOES) system for managing energy and water supply, Desalination 581 (2024) 117608.
[42] F. Di Michele, E. Felaco, I. Gasser, A. Serbinovskiy, H. Struchtrup, Modeling, simulation and optimization of a pressure retarded osmosis power station, Appl Math Comput 353 (2019) 189–207.
[43] N. AlZainati, S. Yadav, A. Altaee, S. Subbiah, S.J. Zaidi, J. Zhou, R.A. Al-Juboori, Y. Chen, M.H. Shaheed, Impact of hydrodynamic conditions on optimum power generation in dual stage pressure retarded osmosis using spiral-wound membrane, Energy Nexus 5 (2022) 100030.
[44] A. Das, A.K. Rao, S. Alnajdi, D.M. Warsinger, Pressure exchanger batch reverse osmosis with zero downtime operation, Desalination 574 (2024) 117121.
[45] J.R. Couper, W.R. Penney, J.R. Fair, S.M. Walas, Chemical Process Equipment: Selection and Design, 2nd ed., Gulf Professional Publishing, 2005.
DOI: 10.1021/op050036h
[46] M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill Chemical Engineering Series, 2003.
[47] R. Makabe, T. Ueyama, H. Sakai, A. Tanioka, Commercial Pressure Retarded Osmosis Systems for Seawater Desalination Plants, Membranes (Basel) 11 (2021) 69.
[48] I. Ibrar, S. Yadav, O. Naji, A.A. Alanezi, N. Ghaffour, S. Déon, S. Subbiah, A. Altaee, Development in forward Osmosis-Membrane distillation hybrid system for wastewater treatment, Sep Purif Technol 286 (2022) 120498.
[49] A. Fadaei, Y. Noorollahi, P. Pakzad, H. Yousefi, Development, 4E-analysis, and optimization of a seawater thermal energy-driven desalination system based on seawater source heat pump, multi-effect desalination, and pressure retarded osmosis with reduced effluent concentration, Energy Convers Manag 298 (2023) 117746.
[50] J. Xu, Y. Liang, X. Luo, J. Chen, Z. Yang, Y. Chen, Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems, Appl Energy 330 (2023) 120341.
[51] N. Saddari, N.S. Agyemang Derkyi, F. Peprah, Technical and Economic analysis of solar PV electricity generation under the net metering scheme at Sunyani Teaching Hospital (STH), Ghana, Renewable and Sustainable Energy Transition 6 (2025) 100097.
[52] F. Kyeremeh, Z. Fang, F. Liu, F. Peprah, Techno-economic analysis of reactive power management in a solar PV microgrid: A case study of Sunyani to Becheam MV feeder, Ghana, Energy Reports 11 (2024) 83–96.
[53] N.H. Leite, C.P. Guzman Lascano, H.G. Valente Morais, L.C. Pereira da Silva, Impact of the net-metering policies on solar photovoltaic investments for residential scale: A case study in Brazil, Renew Energy 231 (2024) 120788.
[54] S.M. Matta, M.A. Selam, H. Manzoor, S. Adham, H.K. Shon, M. Castier, A. Abdel-Wahab, Predicting the performance of spiral-wound membranes in pressure-retarded osmosis processes, Renew Energy 189 (2022) 66–77.
[55] S. Lee, Y.C. Kim, S.-J. Park, S.-K. Lee, H.-C. Choi, Experiment and modeling for performance of a spiral-wound pressure-retarded osmosis membrane module, Desalination Water Treat 57 (2016) 10101–10110.
[56] S.J. Einarsson, L. Guan, L.N. Sim, T.H. Chong, B. Wu, Fouling behaviours and mitigation in pressure-retarded osmosis processes with geothermal water/brine-based draw solutions, Journal of Water Process Engineering 51 (2023) 103485.
[57] N.A. Pham, D.Y.F. Ng, K. Goh, Z. Dong, R. Wang, Assessing the potential of integrally skinned asymmetric hollow fiber membranes for addressing membrane fouling in pressure retarded osmosis process, Desalination 520 (2021) 115347.
[58] S. Liu, W. Song, M. Meng, M. Xie, Q. She, P. Zhao, X. Wang, Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater, Science of The Total Environment 826 (2022) 154048.
[59] A.S.M.M. Hasan, P. Kesapabutr, B. Möller, Bangladesh's pathways to net-zero transition: Reassessing country's solar PV potential with high-resolution GIS data, Energy for Sustainable Development 81 (2024) 101511.
[60] O. Turkovska, K. Gruber, M. Klingler, C. Klöckl, L. Ramirez Camargo, P. Regner, S. Wehrle, J. Schmidt, Methodological and reporting inconsistencies in land-use requirements misguide future renewable energy planning, One Earth 7 (2024) 1741–1759.
[61] Y. Wang, B. Liu, H. Peng, Y. Jiang, Locating the suitable large-scale solar farms in China's deserts with environmental considerations, Science of The Total Environment 955 (2024) 176911.
[62] D. Covelli, E. Virgüez, K. Caldeira, N.S. Lewis, Oahu as a case study for island electricity systems relying on wind and solar generation instead of imported petroleum fuels, Appl Energy 375 (2024) 124054.
[63] S. Castelluccio, S. Fiore, C. Comoglio, Environmental reporting in Italian thermal power plants: insights from a comprehensive analysis of EMAS environmental statements, J Environ Manage 359 (2024) 121035.
[64] R. Kumawat, L. Gidwani, K.B. Rana, Comparative analysis of life cycle assessment of biogas-powered and coal-powered power plant for optimized environmental operation, Heliyon 10 (2024) e39155.
[65] X. Jiang, X. Song, Q. Yu, J. Yang, T. Wang, H. Lu, J. Zeng, X. Guo, Effects of environmental changes on vegetation growth and macroinvertebrate communities of eelgrass meadows in Northern China, Glob Ecol Conserv 59 (2025) e03554.
[66] J. Theilen, V. Sarrazin, E. Hauten, R. Koll, C. Möllmann, A. Fabrizius, R. Thiel, Environmental factors shaping fish fauna structure in a temperate mesotidal estuary: Periodic insights from the Elbe estuary across four decades, Estuar Coast Shelf Sci 318 (2025) 109208.
[67] C.T. Shifa, S.K. Dayananda, X. Yanjie, K.A. Rubeena, S. Bin Muzaffar, A. Nefla, T. Jobiraj, P. Thejass, O.R. Reshi, K.M. Aarif, Long-term anthropogenic stressors cause declines in kingfisher assemblages in wetlands in southwestern India, Ecol Indic 155 (2023) 111062.
[68] G. Marchessaux, N. Barré, V. Mauclert, K. Lombardini, E.D.H. Durieux, D. Veyssiere, J.J. Filippi, J. Bracconi, A. Aiello, M. Garrido, Salinity tolerance of the invasive blue crab Callinectes sapidus: From global to local, a new tool for implementing management strategy, Science of The Total Environment 954 (2024) 176291.
[69] F.D. Rosete, Cagayan de Oro leaks cost water district over P700 million in 2022 alone, Rappler (2024).
[70] Department of Environment and Natural Resources (DENR), Water Quality Guidelines and General Effluent Standards of 2016 , Https://Pab.Emb.Gov.Ph/Wp-Content/Uploads/2017/07/DAO-2016-08-WQG-and-GES.Pdf (n.d.). https://pab.emb.gov.ph/wp-content/uploads/2017/07/DAO-2016-08-WQG-and-GES.pdf (accessed April 13, 2025).
DOI: 10.18411/d-2016-154
[71] M. Kurihara, H. Takeuchi, SWRO-PRO System in "Mega-ton Water System" for Energy Reduction and Low Environmental Impact, Water (Basel) 10 (2018) 48.
DOI: 10.3390/w10010048
[72] D.A. Lemley, M. Nunes, J.B. Adams, G.C. Bate, Regional-scale assessment of eutrophic condition indicators in subtropical temporarily closed estuaries, Estuar Coast Shelf Sci 304 (2024) 108850.
[73] L. Van Niekerk, J.B. Adams, D.G. Allan, S. Taljaard, S.P. Weerts, D. Louw, C. Talanda, P. Van Rooyen, Assessing and planning future estuarine resource use: A scenario-based regional-scale freshwater allocation approach, Science of The Total Environment 657 (2019) 1000–1013.
[74] J. Day, R. Lane, M. Moerschbaecher, H.C. Clark, M. Allison, E. Meselhe, A.S. Kolker, R. Hunter, P. Kemp, J.Y. Ko, R. Twilley, J.R. White, R. DeLaune, J. Stephens, C. Chenevert, E.F. Sanchez, D. Sinha, Patterns and mechanisms of wetland change in the Breton sound estuary, Mississippi River delta: A review, Estuar Coast Shelf Sci 313 (2025) 109065.
[75] L. Reichenberg, F. Hedenus, M. Odenberger, F. Johnsson, The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe, Energy 152 (2018) 914–924.
[76] W.Y. Chia, S.R. Chia, K.S. Khoo, K.W. Chew, P.L. Show, Sustainable membrane technology for resource recovery from wastewater: Forward osmosis and pressure retarded osmosis, Journal of Water Process Engineering 39 (2021) 101758.
[77] M. Llamas-Rivas, A. Pizano-Martínez, C.R. Fuerte-Esquivel, L.R. Merchan-Villalba, J.M. Lozano-García, E.A. Zamora-Cárdenas, V.J. Gutiérrez-Martínez, Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks, Energies (Basel) 14 (2021) 6649.
DOI: 10.3390/en14206649
[78] O. Alıç, A holistic techno-economic feasibility analysis of residential renewable energy systems: An insight into Turkish case, J Energy Storage 94 (2024) 112433.
[79] G. Aquila, E. de O.P. Coelho, B.D. Bonatto, E. de O. Pamplona, W.T. Nakamura, Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil, Energy 226 (2021) 120327.
[80] D. Roy, S. Zhu, R. Wang, P. Mondal, J. Ling-Chin, A.P. Roskilly, Techno-economic and environmental analyses of hybrid renewable energy systems for a remote location employing machine learning models, Appl Energy 361 (2024) 122884.
[81] M. Đukan, D. Gut, A. Gumber, B. Steffen, Harnessing solar power in the Alps: A study on the financial viability of mountain PV systems, Appl Energy 375 (2024) 124019.
[82] J.Y. Ozato, G. Aquila, E. de Oliveira Pamplona, L.C.S. Rocha, P. Rotella Junior, Offshore wind power generation: An economic analysis on the Brazilian coast from the stochastic LCOE, Ocean Coast Manag 244 (2023) 106835.
[83] A. Ioannou, A. Angus, F. Brennan, Stochastic Prediction of Offshore Wind Farm LCOE through an Integrated Cost Model, Energy Procedia 107 (2017) 383–389.
[84] C.M.M.R.S. Silva, P.N.D. Premadasa, D.P. Chandima, J.P. Karunadasa, P. Wheeler, Optimum sizing and configuration of electrical system for telecommunication base stations with grid power, Li-ion battery bank, diesel generator and solar PV, J Energy Storage 123 (2025) 116704.
[85] S. Motiwala, S. Kumar, A.K. Sharma, I. Purohit, Enhancing performance of operational utility-scale solar PV projects in India through re-powering: Potential and techno-economic assessment, Energy for Sustainable Development 83 (2024) 101574.
[86] M. Daoudi, I. Daoudi, A. Idrissi, I. Ihoume, N. Arbaoui, O. Ben lenda, A. Riad, Analyzing life cycle costs and carbon emission reduction of a first offshore wind farm in africa under the climatic conditions of Morocco: Case study, Physics and Chemistry of the Earth, Parts A/B/C 139 (2025) 103937.
[87] International Renewable Energy Agency (IRENA), Renewable Capacity Statistics 2024, Abu Dhabi, 2024.
[88] X. Hu, A. Elshkaki, L. Shen, The implications of circular economy strategies on the future energy transition technologies and their impacts: Solar PV as a case study, Energy 313 (2024) 133972.
[89] S. Preet, S.T. Smith, A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook, J Clean Prod 448 (2024) 141661.
[90] J.C. Garvin, J.L. Simonis, J.L. Taylor, Does size matter? Investigation of the effect of wind turbine size on bird and bat mortality, Biol Conserv 291 (2024) 110474.
[91] A. Moustakas, P. Georgiakakis, E. Kret, E. Kapsalis, Wind turbine power and land cover effects on cumulative bat deaths, Science of The Total Environment 892 (2023) 164536.
[92] Y. Zhao, M. Wang, J. Lin, W. Liu, L. Chen, Z. Wang, B. Sun, X. Li, Exploring recycling strategies for retired wind turbine blades: The impact of policy subsidies and technological investments using a game-theoretic approach, J Clean Prod 490 (2025) 144628.
[93] M.R. Elkadeem, A. Younes, J. Jurasz, A.S. AlZahrani, M.A. Abido, A spatio-temporal decision-making model for solar, wind, and hybrid systems – A case study of Saudi Arabia, Appl Energy 383 (2025) 125277.
[94] V. Kati, C. Kassara, P. Panagos, L. Tampouratzi, D. Gotsis, O. Tzortzakaki, M. Petridou, M. Psaralexi, L. Sidiropoulos, D. Vasilakis, S. Zakkak, A. Galani, N. Mpoukas, The overlooked threat of land take from wind energy infrastructures: Quantification, drivers and policy gaps, J Environ Manage 348 (2023) 119340.