Energetic and economic viability of full-scale pressure retarded osmosis for blue power generation in the Philippines

Article Preview

Abstract:

Salinity gradient power (SGP), also known as blue energy, represents a promising renewable energy (RE) source that can diversify global RE portfolios and address energy security challenges. The Philippines, with its extensive network of estuaries where river outflows meet the sea, offers a strategic opportunity for deploying SGP technologies like the pressure retarded osmosis (PRO). PRO utilizes the osmotic energy produced when freshwater diffuses through a semi-permeable membrane into seawater, generating pressurized flow that can drive turbines for electricity generation. This paper explores the energetic and economic feasibility of stand-alone PRO-based power generation in the Philippines, highlighting its potential to support the country’s transition to RE. The work employed a process simulation that integrates unit operation models with mass and energy streams. Key economic indicators were evaluated, including net present value (NPV) for total project feasibility, internal rate of return (IRR) for the annualized return rate, and discounted payback period (DPP) for the time needed to recover investments. The levelized cost of PRO energy (LCOE), reflecting the lifetime cost per kWh produced, was compared against benchmarks from other RE sources. Results indicate the viability of PRO, demonstrating a positive NPV at a 10% discount rate, with a 7-year DPP and an IRR of 12.16%. The study found that the LCOE value of $0.17 per kWh, using cellulose triacetate membranes with approximately 90% efficiency, is cost-competitive with other RE sources. However, advancements in membrane properties, particularly durability and water permeability, are essential to improving both cost-effectiveness and scalability of PRO power plants. This investigation emphasizes the potential of blue energy as a RE source uniquely suited to archipelagic countries like the Philippines. By prioritizing innovation in membrane technology, PRO can transition from an emerging technology to a cornerstone of sustainable energy strategies, aligning with global carbonization efforts.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Department of Energy, Philippine Energy Plan: Transitioning to Reliable, Clean and Resilient Energy (Volume 1), 2023. https://doe.gov.ph/sites/default/files/pdf/pep/PEP_2023-2050_%28Volume_I%29.pdf (accessed October 28, 2024).

Google Scholar

[2] T.Q. Donaghy, N. Healy, C.Y. Jiang, C.P. Battle, Fossil fuel racism in the United States: How phasing out coal, oil, and gas can protect communities, Energy Res Soc Sci 100 (2023) 103104.

DOI: 10.1016/j.erss.2023.103104

Google Scholar

[3] International Renewable Energy Agency (IRENA), Tripling renewable power and doubling energy efficiency by 2023: Crucial steps toward 1.5 C, (2023).

Google Scholar

[4] I. Gwayi, S.P. Ayeng'o, C.Z.M. Kimambo, Selection of electrochemical and electrical energy storage systems for off-grid renewable energy mini-grids: A review, Clean Eng Technol 25 (2025) 100906.

DOI: 10.1016/J.CLET.2025.100906

Google Scholar

[5] Y. Jiao, D. Månsson, Greenhouse gas emissions from hybrid energy storage systems in future 100% renewable power systems – A Swedish case based on consequential life cycle assessment, J Energy Storage 57 (2023) 106167.

DOI: 10.1016/J.EST.2022.106167

Google Scholar

[6] A. Emdadi, P. Gikas, M. Farazaki, Y. Emami, Salinity gradient energy potential at the hyper saline Urmia Lake – ZarrinehRud River system in Iran, Renew Energy 86 (2016) 154–162.

DOI: 10.1016/j.renene.2015.08.015

Google Scholar

[7] S. AL Mashrafi, N. Diaz-Elsayed, J. Benjamin, M.E. Arias, Q. Zhang, An environmental and economic sustainability assessment of a pressure retarded osmosis system, Desalination 537 (2022) 115869.

DOI: 10.1016/J.DESAL.2022.115869

Google Scholar

[8] J. Lee, Y. Shin, J. Kim, S. Hong, Feasibility and challenges of high-pressure pressure retarded osmosis applications utilizing seawater and hypersaline water sources, Desalination 581 (2024) 117578.

DOI: 10.1016/J.DESAL.2024.117578

Google Scholar

[9] T. Withers, S.P. Neill, Salinity Gradient Power, Comprehensive Renewable Energy, Second Edition: Volume 1-9 1–8 (2022) 50–79.

DOI: 10.1016/B978-0-12-819727-1.00109-6

Google Scholar

[10] M. Essalhi, A. Halil Avci, F. Lipnizki, N. Tavajohi, The potential of salinity gradient energy based on natural and anthropogenic resources in Sweden, Renew Energy 215 (2023) 118984.

DOI: 10.1016/J.RENENE.2023.118984

Google Scholar

[11] X. Zhou, W. Bin Zhang, J.J. Li, X. Bao, X.W. Han, M. Myintzu Theint, X.J. Ma, An electrochemical system for salinity gradient energy harvesting, Energy Convers Manag 255 (2022) 115315.

DOI: 10.1016/J.ENCONMAN.2022.115315

Google Scholar

[12] M.K. Purkait, M. Sharma, P.P. Das, C.-T. Chang, Potential for power production using salinity gradients, Blue Energy Extraction Using Salinity Gradients (2024) 1–26.

DOI: 10.1016/B978-0-443-21612-1.00002-3

Google Scholar

[13] M. Sharma, P.P. Das, A. Chakraborty, M.K. Purkait, Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review, Sustainable Energy Technologies and Assessments 49 (2022) 101687.

DOI: 10.1016/J.SETA.2021.101687

Google Scholar

[14] S. Chae, H. Kim, J. Gi Hong, J. Jang, M. Higa, M. Pishnamazi, J.Y. Choi, R. Chandula Walgama, C. Bae, I.S. Kim, J.S. Park, Clean power generation from salinity gradient using reverse electrodialysis technologies: Recent advances, bottlenecks, and future direction, Chemical Engineering Journal 452 (2023) 139482.

DOI: 10.1016/J.CEJ.2022.139482

Google Scholar

[15] M. Malankowska, Z. Su, K. Karlsen, M. Flaskjær Buhl, H. Guo, L.S. Pedersen, M. Pinelo, Novel membrane modifications for pressure retarded osmosis as a new way for sustainable power generation from salinity gradients, Chem Eng Sci 297 (2024) 120221.

DOI: 10.1016/J.CES.2024.120221

Google Scholar

[16] O.A.H. AL-Musawi, A.W. Mohammad, H.B. Mahood, E. Mahmoudi, W.L. Ang, A.A.H. Kadhum, Energy Comparison and Cost Estimation of Pressure-Retarded Osmosis Using Spiral Wound Membrane, Desalination Water Treat (2024) 100732.

DOI: 10.1016/J.DWT.2024.100732

Google Scholar

[17] Q.A. Khasawneh, B. Tashtoush, A. Nawafleh, B. Kan'an, Techno-Economic Feasibility Study of a Hypersaline Pressure-Retarded Osmosis Power Plants: Dead Sea–Red Sea Conveyor, Energies (Basel) 11 (2018) 3118.

DOI: 10.3390/en11113118

Google Scholar

[18] K. Matsuyama, R. Makabe, T. Ueyama, H. Sakai, K. Saito, T. Okumura, H. Hayashi, A. Tanioka, Power generation system based on pressure retarded osmosis with a commercially-available hollow fiber PRO membrane module using seawater and freshwater, Desalination 499 (2021) 114805.

DOI: 10.1016/J.DESAL.2020.114805

Google Scholar

[19] E.I. Obode, A. Badreldin, S. Adham, M. Castier, A. Abdel-Wahab, Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants, Energies (Basel) 16 (2022) 325.

DOI: 10.3390/en16010325

Google Scholar

[20] D. Dardor, M. Al Maas, J. Minier-Matar, A. Janson, A. Abdel-Wahab, H.K. Shon, S. Adham, Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry, Desalination 516 (2021) 115219.

DOI: 10.1016/J.DESAL.2021.115219

Google Scholar

[21] G. O'Toole, L. Jones, C. Coutinho, C. Hayes, M. Napoles, A. Achilli, River-to-sea pressure retarded osmosis: Resource utilization in a full-scale facility, Desalination 389 (2016) 39–51.

DOI: 10.1016/J.DESAL.2016.01.012

Google Scholar

[22] M. Tagliavini, M.U. Babler, Simulation of spiral-wound pressure retarded osmosis for harvesting osmotic power: Module-level modeling and implications of feed pre-treatment, Desalination 574 (2024) 117184.

DOI: 10.1016/J.DESAL.2023.117184

Google Scholar

[23] T.M. Mansour, T.M. Ismail, K. Ramzy, M. Abd El-Salam, Energy recovery system in small reverse osmosis desalination plant: Experimental and theoretical investigations, Alexandria Engineering Journal 59 (2020) 3741–3753.

DOI: 10.1016/J.AEJ.2020.06.030

Google Scholar

[24] A. Naghiloo, M. Abbaspour, B. Mohammadi-Ivatloo, K. Bakhtari, Modeling and design of a 25 MW osmotic power plant (PRO) on Bahmanshir River of Iran, Renew Energy 78 (2015) 51–59.

DOI: 10.1016/J.RENENE.2014.12.067

Google Scholar

[25] M. Malankowska, Z. Su, K. Karlsen, M. Flaskjær Buhl, H. Guo, L.S. Pedersen, M. Pinelo, Novel membrane modifications for pressure retarded osmosis as a new way for sustainable power generation from salinity gradients, Chem Eng Sci 297 (2024) 120221.

DOI: 10.1016/J.CES.2024.120221

Google Scholar

[26] S.N. Rahman, H. Saleem, S.J. Zaidi, Progress in membranes for pressure retarded osmosis application, Desalination 549 (2023) 116347.

DOI: 10.1016/J.DESAL.2022.116347

Google Scholar

[27] J.H. Low, J. Zhang, W.P. Li, T. Yang, C.F. Wan, F. Esa, M.S. Qua, K. Mottaiyan, S. Murugan, M. Aiman, A. Dhalla, T.S. Chung, C. Gudipati, Industrial scale thin-film composite membrane modules for salinity-gradient energy harvesting through pressure retarded osmosis, Desalination 548 (2023) 116217.

DOI: 10.1016/J.DESAL.2022.116217

Google Scholar

[28] Y. Kim, G. Lee, J. Byun, S. ho Lim, S. Lee, Y.G. Park, Optimizing energy efficiency in desalination: Performance evaluation of seawater reverse osmosis and pressure retarded osmosis hybrid systems, Desalination 601 (2025) 118557.

DOI: 10.1016/J.DESAL.2025.118557

Google Scholar

[29] S.J. Moon, S.M. Lee, J.H. Kim, S.H. Park, H.H. Wang, J.H. Kim, Y.M. Lee, A highly robust and water permeable thin film composite membranes for pressure retarded osmosis generating 26 W·m−2 at 21 bar, Desalination 483 (2020) 114409.

DOI: 10.1016/J.DESAL.2020.114409

Google Scholar

[30] A. Shadravan, M. Amani, A. Jantrania, Feasibility of thin film nanocomposite membranes for clean energy using pressure retarded osmosis and reverse electrodialysis, Energy Nexus 7 (2022) 100141.

DOI: 10.1016/J.NEXUS.2022.100141

Google Scholar

[31] W. Gai, D.L. Zhao, T.S. Chung, Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation, J Memb Sci 551 (2018) 94–102.

DOI: 10.1016/J.MEMSCI.2018.01.034

Google Scholar

[32] Y. Shi, M. Zhang, H. Zhang, F. Yang, C.Y. Tang, Y. Dong, Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review, Water Res 189 (2021) 116666.

DOI: 10.1016/J.WATRES.2020.116666

Google Scholar

[33] M. Javadi Azad, A.R. Pouranfard, D. Emadzadeh, W.J. Lau, E. Alipanahpour Dil, Simulation of forward osmosis and pressure retarded osmosis membrane performance: Effect of TiO2 nanoparticles loading on the semi-permeable membrane, Comput Chem Eng 160 (2022) 107709.

DOI: 10.1016/J.COMPCHEMENG.2022.107709

Google Scholar

[34] Y.Y. Liang, Review of analytical and numerical modeling for pressure retarded osmosis membrane systems, Desalination 560 (2023) 116655.

DOI: 10.1016/J.DESAL.2023.116655

Google Scholar

[35] F.J. Aschmoneit, C. Hélix-Nielsen, Submerged-helical module design for pressure retarded osmosis:A conceptual study using computational fluid dynamics, J Memb Sci 620 (2021) 118704.

DOI: 10.1016/J.MEMSCI.2020.118704

Google Scholar

[36] G. Han, S. Zhang, X. Li, T.S. Chung, Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation, Prog Polym Sci 51 (2015) 1–27.

DOI: 10.1016/J.PROGPOLYMSCI.2015.04.005

Google Scholar

[37] S. Yagnambhatt, S. Khanmohammadi, J. Maisonneuve, Demonstration of a real-time maximum power point tracker for salt gradient osmotic power systems, Appl Energy 376 (2024) 124205.

DOI: 10.1016/J.APENERGY.2024.124205

Google Scholar

[38] A. Shadravan, M. Amani, A. Jantrania, Feasibility of thin film nanocomposite membranes for clean energy using pressure retarded osmosis and reverse electrodialysis, Energy Nexus 7 (2022) 100141.

DOI: 10.1016/J.NEXUS.2022.100141

Google Scholar

[39] F. Helfer, C. Lemckert, Y.G. Anissimov, Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review, J Memb Sci 453 (2014) 337–358.

DOI: 10.1016/J.MEMSCI.2013.10.053

Google Scholar

[40] H.W. Chung, J. Swaminathan, L.D. Banchik, J.H. Lienhard, Economic framework for net power density and levelized cost of electricity in pressure-retarded osmosis, Desalination 448 (2018) 13–20.

DOI: 10.1016/j.desal.2018.09.007

Google Scholar

[41] D. Li, Z. Mo, A.G. Fane, Q. She, A multifunctional desalination-osmotic energy storage (DOES) system for managing energy and water supply, Desalination 581 (2024) 117608.

DOI: 10.1016/J.DESAL.2024.117608

Google Scholar

[42] F. Di Michele, E. Felaco, I. Gasser, A. Serbinovskiy, H. Struchtrup, Modeling, simulation and optimization of a pressure retarded osmosis power station, Appl Math Comput 353 (2019) 189–207.

DOI: 10.1016/J.AMC.2019.01.046

Google Scholar

[43] N. AlZainati, S. Yadav, A. Altaee, S. Subbiah, S.J. Zaidi, J. Zhou, R.A. Al-Juboori, Y. Chen, M.H. Shaheed, Impact of hydrodynamic conditions on optimum power generation in dual stage pressure retarded osmosis using spiral-wound membrane, Energy Nexus 5 (2022) 100030.

DOI: 10.1016/J.NEXUS.2021.100030

Google Scholar

[44] A. Das, A.K. Rao, S. Alnajdi, D.M. Warsinger, Pressure exchanger batch reverse osmosis with zero downtime operation, Desalination 574 (2024) 117121.

DOI: 10.1016/j.desal.2023.117121

Google Scholar

[45] J.R. Couper, W.R. Penney, J.R. Fair, S.M. Walas, Chemical Process Equipment: Selection and Design, 2nd ed., Gulf Professional Publishing, 2005.

DOI: 10.1021/op050036h

Google Scholar

[46] M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill Chemical Engineering Series, 2003.

Google Scholar

[47] R. Makabe, T. Ueyama, H. Sakai, A. Tanioka, Commercial Pressure Retarded Osmosis Systems for Seawater Desalination Plants, Membranes (Basel) 11 (2021) 69.

DOI: 10.3390/membranes11010069

Google Scholar

[48] I. Ibrar, S. Yadav, O. Naji, A.A. Alanezi, N. Ghaffour, S. Déon, S. Subbiah, A. Altaee, Development in forward Osmosis-Membrane distillation hybrid system for wastewater treatment, Sep Purif Technol 286 (2022) 120498.

DOI: 10.1016/j.seppur.2022.120498

Google Scholar

[49] A. Fadaei, Y. Noorollahi, P. Pakzad, H. Yousefi, Development, 4E-analysis, and optimization of a seawater thermal energy-driven desalination system based on seawater source heat pump, multi-effect desalination, and pressure retarded osmosis with reduced effluent concentration, Energy Convers Manag 298 (2023) 117746.

DOI: 10.1016/j.enconman.2023.117746

Google Scholar

[50] J. Xu, Y. Liang, X. Luo, J. Chen, Z. Yang, Y. Chen, Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems, Appl Energy 330 (2023) 120341.

DOI: 10.1016/j.apenergy.2022.120341

Google Scholar

[51] N. Saddari, N.S. Agyemang Derkyi, F. Peprah, Technical and Economic analysis of solar PV electricity generation under the net metering scheme at Sunyani Teaching Hospital (STH), Ghana, Renewable and Sustainable Energy Transition 6 (2025) 100097.

DOI: 10.1016/j.rset.2024.100097

Google Scholar

[52] F. Kyeremeh, Z. Fang, F. Liu, F. Peprah, Techno-economic analysis of reactive power management in a solar PV microgrid: A case study of Sunyani to Becheam MV feeder, Ghana, Energy Reports 11 (2024) 83–96.

DOI: 10.1016/j.egyr.2023.11.031

Google Scholar

[53] N.H. Leite, C.P. Guzman Lascano, H.G. Valente Morais, L.C. Pereira da Silva, Impact of the net-metering policies on solar photovoltaic investments for residential scale: A case study in Brazil, Renew Energy 231 (2024) 120788.

DOI: 10.1016/j.renene.2024.120788

Google Scholar

[54] S.M. Matta, M.A. Selam, H. Manzoor, S. Adham, H.K. Shon, M. Castier, A. Abdel-Wahab, Predicting the performance of spiral-wound membranes in pressure-retarded osmosis processes, Renew Energy 189 (2022) 66–77.

DOI: 10.1016/j.renene.2022.02.125

Google Scholar

[55] S. Lee, Y.C. Kim, S.-J. Park, S.-K. Lee, H.-C. Choi, Experiment and modeling for performance of a spiral-wound pressure-retarded osmosis membrane module, Desalination Water Treat 57 (2016) 10101–10110.

DOI: 10.1080/19443994.2015.1043494

Google Scholar

[56] S.J. Einarsson, L. Guan, L.N. Sim, T.H. Chong, B. Wu, Fouling behaviours and mitigation in pressure-retarded osmosis processes with geothermal water/brine-based draw solutions, Journal of Water Process Engineering 51 (2023) 103485.

DOI: 10.1016/j.jwpe.2023.103485

Google Scholar

[57] N.A. Pham, D.Y.F. Ng, K. Goh, Z. Dong, R. Wang, Assessing the potential of integrally skinned asymmetric hollow fiber membranes for addressing membrane fouling in pressure retarded osmosis process, Desalination 520 (2021) 115347.

DOI: 10.1016/j.desal.2021.115347

Google Scholar

[58] S. Liu, W. Song, M. Meng, M. Xie, Q. She, P. Zhao, X. Wang, Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater, Science of The Total Environment 826 (2022) 154048.

DOI: 10.1016/j.scitotenv.2022.154048

Google Scholar

[59] A.S.M.M. Hasan, P. Kesapabutr, B. Möller, Bangladesh's pathways to net-zero transition: Reassessing country's solar PV potential with high-resolution GIS data, Energy for Sustainable Development 81 (2024) 101511.

DOI: 10.1016/j.esd.2024.101511

Google Scholar

[60] O. Turkovska, K. Gruber, M. Klingler, C. Klöckl, L. Ramirez Camargo, P. Regner, S. Wehrle, J. Schmidt, Methodological and reporting inconsistencies in land-use requirements misguide future renewable energy planning, One Earth 7 (2024) 1741–1759.

DOI: 10.1016/j.oneear.2024.09.010

Google Scholar

[61] Y. Wang, B. Liu, H. Peng, Y. Jiang, Locating the suitable large-scale solar farms in China's deserts with environmental considerations, Science of The Total Environment 955 (2024) 176911.

DOI: 10.1016/j.scitotenv.2024.176911

Google Scholar

[62] D. Covelli, E. Virgüez, K. Caldeira, N.S. Lewis, Oahu as a case study for island electricity systems relying on wind and solar generation instead of imported petroleum fuels, Appl Energy 375 (2024) 124054.

DOI: 10.1016/j.apenergy.2024.124054

Google Scholar

[63] S. Castelluccio, S. Fiore, C. Comoglio, Environmental reporting in Italian thermal power plants: insights from a comprehensive analysis of EMAS environmental statements, J Environ Manage 359 (2024) 121035.

DOI: 10.1016/J.JENVMAN.2024.121035

Google Scholar

[64] R. Kumawat, L. Gidwani, K.B. Rana, Comparative analysis of life cycle assessment of biogas-powered and coal-powered power plant for optimized environmental operation, Heliyon 10 (2024) e39155.

DOI: 10.1016/J.HELIYON.2024.E39155

Google Scholar

[65] X. Jiang, X. Song, Q. Yu, J. Yang, T. Wang, H. Lu, J. Zeng, X. Guo, Effects of environmental changes on vegetation growth and macroinvertebrate communities of eelgrass meadows in Northern China, Glob Ecol Conserv 59 (2025) e03554.

DOI: 10.1016/J.GECCO.2025.E03554

Google Scholar

[66] J. Theilen, V. Sarrazin, E. Hauten, R. Koll, C. Möllmann, A. Fabrizius, R. Thiel, Environmental factors shaping fish fauna structure in a temperate mesotidal estuary: Periodic insights from the Elbe estuary across four decades, Estuar Coast Shelf Sci 318 (2025) 109208.

DOI: 10.1016/J.ECSS.2025.109208

Google Scholar

[67] C.T. Shifa, S.K. Dayananda, X. Yanjie, K.A. Rubeena, S. Bin Muzaffar, A. Nefla, T. Jobiraj, P. Thejass, O.R. Reshi, K.M. Aarif, Long-term anthropogenic stressors cause declines in kingfisher assemblages in wetlands in southwestern India, Ecol Indic 155 (2023) 111062.

DOI: 10.1016/J.ECOLIND.2023.111062

Google Scholar

[68] G. Marchessaux, N. Barré, V. Mauclert, K. Lombardini, E.D.H. Durieux, D. Veyssiere, J.J. Filippi, J. Bracconi, A. Aiello, M. Garrido, Salinity tolerance of the invasive blue crab Callinectes sapidus: From global to local, a new tool for implementing management strategy, Science of The Total Environment 954 (2024) 176291.

DOI: 10.1016/J.SCITOTENV.2024.176291

Google Scholar

[69] F.D. Rosete, Cagayan de Oro leaks cost water district over P700 million in 2022 alone, Rappler (2024).

Google Scholar

[70] Department of Environment and Natural Resources (DENR), Water Quality Guidelines and General Effluent Standards of 2016 , Https://Pab.Emb.Gov.Ph/Wp-Content/Uploads/2017/07/DAO-2016-08-WQG-and-GES.Pdf (n.d.). https://pab.emb.gov.ph/wp-content/uploads/2017/07/DAO-2016-08-WQG-and-GES.pdf (accessed April 13, 2025).

DOI: 10.18411/d-2016-154

Google Scholar

[71] M. Kurihara, H. Takeuchi, SWRO-PRO System in "Mega-ton Water System" for Energy Reduction and Low Environmental Impact, Water (Basel) 10 (2018) 48.

DOI: 10.3390/w10010048

Google Scholar

[72] D.A. Lemley, M. Nunes, J.B. Adams, G.C. Bate, Regional-scale assessment of eutrophic condition indicators in subtropical temporarily closed estuaries, Estuar Coast Shelf Sci 304 (2024) 108850.

DOI: 10.1016/J.ECSS.2024.108850

Google Scholar

[73] L. Van Niekerk, J.B. Adams, D.G. Allan, S. Taljaard, S.P. Weerts, D. Louw, C. Talanda, P. Van Rooyen, Assessing and planning future estuarine resource use: A scenario-based regional-scale freshwater allocation approach, Science of The Total Environment 657 (2019) 1000–1013.

DOI: 10.1016/J.SCITOTENV.2018.12.033

Google Scholar

[74] J. Day, R. Lane, M. Moerschbaecher, H.C. Clark, M. Allison, E. Meselhe, A.S. Kolker, R. Hunter, P. Kemp, J.Y. Ko, R. Twilley, J.R. White, R. DeLaune, J. Stephens, C. Chenevert, E.F. Sanchez, D. Sinha, Patterns and mechanisms of wetland change in the Breton sound estuary, Mississippi River delta: A review, Estuar Coast Shelf Sci 313 (2025) 109065.

DOI: 10.1016/J.ECSS.2024.109065

Google Scholar

[75] L. Reichenberg, F. Hedenus, M. Odenberger, F. Johnsson, The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe, Energy 152 (2018) 914–924.

DOI: 10.1016/j.energy.2018.02.061

Google Scholar

[76] W.Y. Chia, S.R. Chia, K.S. Khoo, K.W. Chew, P.L. Show, Sustainable membrane technology for resource recovery from wastewater: Forward osmosis and pressure retarded osmosis, Journal of Water Process Engineering 39 (2021) 101758.

DOI: 10.1016/J.JWPE.2020.101758

Google Scholar

[77] M. Llamas-Rivas, A. Pizano-Martínez, C.R. Fuerte-Esquivel, L.R. Merchan-Villalba, J.M. Lozano-García, E.A. Zamora-Cárdenas, V.J. Gutiérrez-Martínez, Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks, Energies (Basel) 14 (2021) 6649.

DOI: 10.3390/en14206649

Google Scholar

[78] O. Alıç, A holistic techno-economic feasibility analysis of residential renewable energy systems: An insight into Turkish case, J Energy Storage 94 (2024) 112433.

DOI: 10.1016/j.est.2024.112433

Google Scholar

[79] G. Aquila, E. de O.P. Coelho, B.D. Bonatto, E. de O. Pamplona, W.T. Nakamura, Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil, Energy 226 (2021) 120327.

DOI: 10.1016/j.energy.2021.120327

Google Scholar

[80] D. Roy, S. Zhu, R. Wang, P. Mondal, J. Ling-Chin, A.P. Roskilly, Techno-economic and environmental analyses of hybrid renewable energy systems for a remote location employing machine learning models, Appl Energy 361 (2024) 122884.

DOI: 10.1016/j.apenergy.2024.122884

Google Scholar

[81] M. Đukan, D. Gut, A. Gumber, B. Steffen, Harnessing solar power in the Alps: A study on the financial viability of mountain PV systems, Appl Energy 375 (2024) 124019.

DOI: 10.1016/j.apenergy.2024.124019

Google Scholar

[82] J.Y. Ozato, G. Aquila, E. de Oliveira Pamplona, L.C.S. Rocha, P. Rotella Junior, Offshore wind power generation: An economic analysis on the Brazilian coast from the stochastic LCOE, Ocean Coast Manag 244 (2023) 106835.

DOI: 10.1016/j.ocecoaman.2023.106835

Google Scholar

[83] A. Ioannou, A. Angus, F. Brennan, Stochastic Prediction of Offshore Wind Farm LCOE through an Integrated Cost Model, Energy Procedia 107 (2017) 383–389.

DOI: 10.1016/j.egypro.2016.12.180

Google Scholar

[84] C.M.M.R.S. Silva, P.N.D. Premadasa, D.P. Chandima, J.P. Karunadasa, P. Wheeler, Optimum sizing and configuration of electrical system for telecommunication base stations with grid power, Li-ion battery bank, diesel generator and solar PV, J Energy Storage 123 (2025) 116704.

DOI: 10.1016/J.EST.2025.116704

Google Scholar

[85] S. Motiwala, S. Kumar, A.K. Sharma, I. Purohit, Enhancing performance of operational utility-scale solar PV projects in India through re-powering: Potential and techno-economic assessment, Energy for Sustainable Development 83 (2024) 101574.

DOI: 10.1016/J.ESD.2024.101574

Google Scholar

[86] M. Daoudi, I. Daoudi, A. Idrissi, I. Ihoume, N. Arbaoui, O. Ben lenda, A. Riad, Analyzing life cycle costs and carbon emission reduction of a first offshore wind farm in africa under the climatic conditions of Morocco: Case study, Physics and Chemistry of the Earth, Parts A/B/C 139 (2025) 103937.

DOI: 10.1016/J.PCE.2025.103937

Google Scholar

[87] International Renewable Energy Agency (IRENA), Renewable Capacity Statistics 2024, Abu Dhabi, 2024.

Google Scholar

[88] X. Hu, A. Elshkaki, L. Shen, The implications of circular economy strategies on the future energy transition technologies and their impacts: Solar PV as a case study, Energy 313 (2024) 133972.

DOI: 10.1016/J.ENERGY.2024.133972

Google Scholar

[89] S. Preet, S.T. Smith, A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook, J Clean Prod 448 (2024) 141661.

DOI: 10.1016/J.JCLEPRO.2024.141661

Google Scholar

[90] J.C. Garvin, J.L. Simonis, J.L. Taylor, Does size matter? Investigation of the effect of wind turbine size on bird and bat mortality, Biol Conserv 291 (2024) 110474.

DOI: 10.1016/J.BIOCON.2024.110474

Google Scholar

[91] A. Moustakas, P. Georgiakakis, E. Kret, E. Kapsalis, Wind turbine power and land cover effects on cumulative bat deaths, Science of The Total Environment 892 (2023) 164536.

DOI: 10.1016/J.SCITOTENV.2023.164536

Google Scholar

[92] Y. Zhao, M. Wang, J. Lin, W. Liu, L. Chen, Z. Wang, B. Sun, X. Li, Exploring recycling strategies for retired wind turbine blades: The impact of policy subsidies and technological investments using a game-theoretic approach, J Clean Prod 490 (2025) 144628.

DOI: 10.1016/J.JCLEPRO.2024.144628

Google Scholar

[93] M.R. Elkadeem, A. Younes, J. Jurasz, A.S. AlZahrani, M.A. Abido, A spatio-temporal decision-making model for solar, wind, and hybrid systems – A case study of Saudi Arabia, Appl Energy 383 (2025) 125277.

DOI: 10.1016/J.APENERGY.2025.125277

Google Scholar

[94] V. Kati, C. Kassara, P. Panagos, L. Tampouratzi, D. Gotsis, O. Tzortzakaki, M. Petridou, M. Psaralexi, L. Sidiropoulos, D. Vasilakis, S. Zakkak, A. Galani, N. Mpoukas, The overlooked threat of land take from wind energy infrastructures: Quantification, drivers and policy gaps, J Environ Manage 348 (2023) 119340.

DOI: 10.1016/J.JENVMAN.2023.119340

Google Scholar