[1]
N.V. Banichuk, "On the game theory approach to problems of optimization of elastic bodies," Journal of Applied Mathematics and Mechanics, pp. Volume 37, Issue 6, pp.1042-1052, https://doi.org/10.1016/0021-8928(73)90069-5, 1973.
DOI: 10.1016/0021-8928(73)90069-5
Google Scholar
[2]
C. Thore, E. Holmberg und A. Klarbring, "A general framework for robust topology optimization under load-uncertainty including stress constraints.," Computer Methods in Applied Mechanics and Engineering, Volume 319, https://doi.org/10.1016/j.cm, p.1, 2017.
DOI: 10.1016/j.cma.2017.02.015
Google Scholar
[3]
C.-J. Thore, H. Alm Grundström und A. Klarbring, "Game formulations for structural optimization under uncertainty.," Int J Numer Methods Eng., p.121: 165–185. https://doi.org/10.1002/nme.6204, 2020.
DOI: 10.1002/nme.6204
Google Scholar
[4]
F. Chernousko und A. Melikyan, "Some Differential Games with Incomplete Information," in Optimization Techniques IFIP Technical Conference. Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-662-38527-2_62, Berlin, Heidelberg, Springer, 1975.
DOI: 10.1007/978-3-662-38527-2_62
Google Scholar
[5]
J. Szép und F. Forgó, "Games against nature," in Introduction to the Theory of Games. Mathematics and Its Applications, vol 17., Dordrecht. https://doi.org/10.1007/978-94-009-5193-8_21, Springer, 1985, pp.230-236.
DOI: 10.1007/978-94-009-5193-8_21
Google Scholar
[6]
V. Kobelev, "On a game approach to optimal structural design," Struct Multidisc Optimization, https://doi.org/10.1007/BF01743512, pp.194-199, 1993.
Google Scholar
[7]
I. Elishakoff und M. Ohsaki, Optimization and Anti-optimization of Structures Under Uncertainty, London, ISBN 9781848164772: Imperial College Press,, 2010.
DOI: 10.1142/p678
Google Scholar
[8]
J. Szép und F. Forgó, "The n-person game," in Introduction to the Theory of Games. Mathematics and Its Applications, vol 17. , Dordrecht. https://doi.org/10.1007/978-94-009-5193-8_2, Springer, 1985, pp.18-21.
DOI: 10.1007/978-94-009-5193-8_2
Google Scholar
[9]
S. Tadelis, Game Theory. An Introduction., Princeton and Oxford: Princeton University Press, 2013.
Google Scholar
[10]
S. Karlin, Mathematical methods and theory in games, programming and economics, Addison-Wesley , 1959.
Google Scholar
[11]
J. von Neumann, "Zur Theorie der Gesellschaftsspiele," Math. Ann., V. 100, https://link.springer.com/content/pdf/10.1007/BF01448847.pdf, p.295–320, 1928.
DOI: 10.1007/bf01448847
Google Scholar
[12]
D. Werner, "Normierte Räume," in Funktionalanalysis. Springer-Lehrbuch., Berlin, Heidelberg, Springer Spektrum, https://doi.org/10.1007/978-3-662-55407-4_1, 2018.
DOI: 10.1007/978-3-662-55407-4_1
Google Scholar
[13]
J. von Neumann und O. Morgenstern, Theory of Games and Economic Behavior, Princeton: Princeton University Press. https://doi.org/10.1515/978140082946, 2004.
Google Scholar
[14]
F. Zhang, Matrix Theory, Basic Results and Techniques, New York: Springer, https://doi.org/10.1007/978-1-4614-1099-7 , 2011.
Google Scholar
[15]
R. Luce und H. Raiffa, Games and decisions. Introduction and critical survey, Hoboken: Wiley , 1957.
Google Scholar
[16]
J. Szép und F. Forgó, "Games played over the unit square," in Introduction to the Theory of Games. Mathematics and Its Ap-plications, vol 17, Dordrech, thttps://doi.org/10.1007/978-94-009-5193-8_16, Springer, 1985, pp.196-199.
DOI: 10.1007/978-94-009-5193-8_16
Google Scholar
[17]
European Commission, "Science and Technology for Near-Earth Object Impact Prevention, https://doi.org/10.3030/640351," CORDIS - EU research results, European Union, Brussel, 2022.
Google Scholar
[18]
S. Lem, Pilot Pirx, Frankfurt am Main: Suhrkamp-Verlag, 2003.
Google Scholar
[19]
V. Kobelev, "On the Game-Based Approach to Optimal Design," Eng, 5(4), https://doi.org/10.3390/eng5040169, pp.3212-3238., 2024.
Google Scholar