Pretreatment Process on Reverse Osmosis Brine as Electrodialysis Feed

Article Preview

Abstract:

Reverse Osmosis (RO) Brine is waste generated from the desalination process using the RO method. RO Brine is generally directly thrown back into the sea, even though it has the potential to be reprocessed because it still contains a variety of ions in it. The best method in RO Brine processing is Electrodialysis. But it has a problem of decreased membrane performance caused by the formation of fouling. The fouling problem can be overcome by doing a pretreatment process to eliminate impurities contained in RO Brine, one of which is Ca2+. The existence of Ca2+ can trigger the formation of CaSO4 deposits. Therefore, it needs excess reagent Na2CO3 with a certain amount to eliminate the whole Ca2+. Currently, it isn’t yet known the best pretreatment conditions that can eliminate impurities ions and produce high concentrations of NaCl. Pretreatment trials are needed in various variations of reagents amount to reduce impurities. The purpose of this study is to find out the best RO Brine pretreatment process that will later be used for the electrodialysis process to produce high NaCl recovery. The best results were obtained in the pretreatment process with variations NaOH excesses by 15% and Na2CO3 by 30% from the ideal stoichiometry.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Zhang, J. Hu, W. Li, and H. Qi, Research Progress of Brackish Water Desalination by Reverse Osmosis,, J. Water Resour. Prot., vol. 05, no. 03, p.304–309, 2013,.

DOI: 10.4236/jwarp.2013.53031

Google Scholar

[2] G. Kronenberg, Cogeneration with the LT-MED desalination process,, Desalination, vol. 108, no. 1–3, p.287–294, 1997,.

DOI: 10.1016/s0011-9164(97)00038-6

Google Scholar

[3] V. I. Diaratih and W. Hadi, Alternatif Pemanfaatan Air Limbah dari Reverse Osmosis dengan Metode Elektrolisis untuk Menghasilkan Gas Hidrogen dan Oksigen,, J. Tek. Its, vol. 4, no. 1, p.4–6, (2015).

Google Scholar

[4] N. Ahmad and R. E. Baddour, A review of sources, effects, disposal methods, and regulations of brine into marine environments,, Ocean Coast. Manag., vol. 87, p.1–7, 2014,.

DOI: 10.1016/j.ocecoaman.2013.10.020

Google Scholar

[5] N. Afrasiabi and E. Shahbazali, Ro brine treatment and disposal methods,, Desalin. Water Treat., vol. 35, no. 1–3, p.39–53, 2011,.

DOI: 10.5004/dwt.2011.3128

Google Scholar

[6] M. S. Islam, A. Sultana, A. H. M. Saadat, M. S. Islam, M. Shammi, and M. K. Uddin, Desalination Technologies for Developing Countries: A Review,, J. Sci. Res., vol. 10, no. 1, p.77–97, 2018,.

DOI: 10.3329/jsr.v10i1.33179

Google Scholar

[7] L. Mariah et al., Membrane distillation of concentrated brines-Role of water activities in the evaluation of driving force,, J. Memb. Sci., vol. 280, no. 1–2, p.937–947, 2006,.

DOI: 10.1016/j.memsci.2006.03.014

Google Scholar

[8] K. Jevons and M. Awe, Economic benefits of membrane technology vs. evaporator,, Desalination, vol. 250, no. 3, p.961–963, 2010,.

DOI: 10.1016/j.desal.2009.09.081

Google Scholar

[9] M. Kurihara, H. Yamamura, and and T. Nakanishi, High Recovery / High pressure Membranes for Brine Conversion SWRO Process Development and its Performance Data,, Eur. Desalin. Soc. Int. Water Serv. Assoc., vol. 125, p.9–15, (1999).

DOI: 10.1016/s0011-9164(99)00119-8

Google Scholar

[10] K. G. Nayar et al., Feasibility study of an electrodialysis system for in-home water desalination in urban India,, Dev. Eng., vol. 2, p.38–46, 2016,.

Google Scholar

[11] P. Krivosik, N. Mo, S. Kalarickal, and C. E. Patton, Hamiltonian formalism for two magnon scattering microwave relaxation: Theory and applications,, J. Appl. Phys., vol. 101, no. 8, p.083901, Apr. 2007,.

DOI: 10.1063/1.2717084

Google Scholar

[12] T. Hoshino, Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane,, Desalination, vol. 317, p.11–16, 2013,.

DOI: 10.1016/j.desal.2013.02.014

Google Scholar

[13] P. Del Moral and Valero fernando, - Theory and applications,, Mean F. Simul. Monte Carlo Integr., p.85–124, 2020,.

Google Scholar

[14] B. Pilat, Practice of water desalination by electrodialysis,, Desalination, vol. 139, no. 1–3, p.385–392, 2001,.

DOI: 10.1016/s0011-9164(01)00338-1

Google Scholar

[15] N. B. Goodman, R. J. Taylor, Z. Xie, Y. Gozukara, and A. Clements, A feasibility study of municipal wastewater desalination using electrodialysis reversal to provide recycled water for horticultural irrigation,, Desalination, vol. 317, p.77–83, 2013,.

DOI: 10.1016/j.desal.2013.02.010

Google Scholar

[16] D. A. Vermaas, D. Kunteng, M. Saakes, and K. Nijmeijer, Fouling in reverse electrodialysis under natural conditions,, Water Res., vol. 47, no. 3, p.1289–1298, 2013,.

DOI: 10.1016/j.watres.2012.11.053

Google Scholar

[17] S. Mikhaylin and L. Bazinet, Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control,, Adv. Colloid Interface Sci., vol. 229, p.34–56, 2016,.

DOI: 10.1016/j.cis.2015.12.006

Google Scholar

[18] C. X. Liu, D. R. Zhang, Y. He, X. S. Zhao, and R. Bai, Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches,, J. Memb. Sci., vol. 346, no. 1, p.121–130, 2010,.

DOI: 10.1016/j.memsci.2009.09.028

Google Scholar

[19] G. Grossman and A. A. Sonin, Membrane fouling in electrodialysis: a model and experiments,, Desalination, vol. 12, no. 1, p.107–125, 1973,.

DOI: 10.1016/s0011-9164(00)80178-2

Google Scholar

[20] J. A. Sanmartino, M. Khayet, M. C. García-Payo, H. El-Bakouri, and A. Riaza, Treatment of reverse osmosis brine by direct contact membrane distillation: Chemical pretreatment approach,, Desalination, vol. 420, no. May, p.79–90, 2017,.

DOI: 10.1016/j.desal.2017.06.030

Google Scholar

[21] C. M. Pereira, C. A. Neiverth, S. Maeda, M. Guiotoku, and L. Franciscon, Complexometric titration with potenciometric indicator to determination of calcium and magnesium in soil extracts1,, Rev. Bras. Ciência do Solo, vol. 35, no. 4, p.1331–1336, 2011,.

DOI: 10.1590/s0100-06832011000400027

Google Scholar

[22] R. B. Barnes, D. Richardson, J. W. Berry, and R. L. Hood, AND ENGINEERING CHEMISTRY Rapid Analytical Procedure,, no. 11, (1945).

Google Scholar

[23] S. Casas, C. Aladjem, J. L. Cortina, E. Larrotcha, and L. V. Cremades, Seawater Reverse Osmosis Brines as a New Salt Source for the Chlor-Alkali Industry: Integration of NaCl Concentration by Electrodialysis,, Solvent Extr. Ion Exch., vol. 30, no. 4, p.322–332, 2012,.

DOI: 10.1080/07366299.2012.686849

Google Scholar

[24] M. Sadrzadeh, A. Razmi, and T. Mohammadi, Separation of different ions from wastewater at various operating conditions using electrodialysis,, Sep. Purif. Technol., vol. 54, no. 2, p.147–156, 2007,.

DOI: 10.1016/j.seppur.2006.08.023

Google Scholar

[25] D. E. López and J. P. Trembly, Desalination of hypersaline brines with joule-heating and chemical pre-treatment: Conceptual design and economics,, Desalination, vol. 415, no. April, p.49–57, 2017,.

DOI: 10.1016/j.desal.2017.04.003

Google Scholar

[26] L. Irving, Kosugi 1977 first stille,, vol. 14, no. 2, p.1–2, 2005, [Online]. Available: papers3://publication/uuid/E14B9526-AFAD-49FC-A72C-E3065CE66AD7.

Google Scholar

[27] C. Pretreatment, For Lenntech,, no. October, (2013).

Google Scholar