[1]
S.E.E. Hamza, Effect of Uniform Suction on MHD Flow Through Porous Medium Due To A Rotating Disk, International Journal of Scientific & Engineering Research 5(12) (2014) 896-902.
Google Scholar
[2]
P. Zandbergen, D. Dijkstra, Von Kármán swirling flows, Annual Rev. Fluid. Mech. 19 (1987) 465–491.
DOI: 10.1146/annurev.fl.19.010187.002341
Google Scholar
[3]
M. Ehrhardt, An introduction to fluid-porous interface coupling, Progress in computational physics 2 (2010) 3–12.
Google Scholar
[4]
G. Neale, W. Nader, Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium, The Canadian Journal of Chemical Engineering 52(4) (1974) 475–478. doi: https://doi.org/10.1002/cjce.5450520407.
DOI: 10.1002/cjce.5450520407
Google Scholar
[5]
P. Saxena, L. Kumar, A study of the effect of magnetic field on the rotation of a viscous fluid near a porous medium with a constant suction, Int. J. Eng. Sci. Tech. 6 (2014) 64–76.
DOI: 10.4314/ijest.v6i4.6
Google Scholar
[6]
S.R. Gunakala, B. Bhatt, D.M.G. Comissiong, D.V. Krishna, Heat Transfer in Immiscible Fluids through a Channel with Porous Beds Bounded by Differentially Heated Plates Using Galerkin's Finite Element Method, Journal of Mathematics Research 3(2) (2011) 74-97.
DOI: 10.5539/jmr.v3n2p74
Google Scholar
[7]
S. Jain, S. Bohra, Radiation Effects in Flow through Porous Medium over a Rotating Disk with Variable Fluid Properties, Advances in Mathematical Physics 2016 (2016) 9671513. doi: https://doi.org/10.1155/2016/9671513.
DOI: 10.1155/2016/9671513
Google Scholar
[8]
T. Hayat, F. Hayat, T. Muhammad, A. Alsaedi, Darcy-Forchheimer flow by rotating disk with partial slip, Applied Mathematics and Mechanics 41 (2020) 741-752. doi: https://doi.org/10.1007/s10483-020-2608-9.
DOI: 10.1007/s10483-020-2608-9
Google Scholar
[9]
T. Gul, R.S. Gul, W. Noman, F. Hussain, I.S. Amiri, Controlling of the melting through porous medium and magnetic field, Measurement and Control 54(5-6) (2021) 779-789. doi: https://doi.org/10.1177/0020294020919918.
DOI: 10.1177/0020294020919918
Google Scholar
[10]
P. Sibanda, O.D. Makinde, On steady MHD flow and heat transfer past a rotating disk in a porous medium with ohmic heating and viscous dissipation, International Journal of Numerical Methods for Heat & Fluid Flow 20(3) (2010) 269-285. doi: https://doi.org/10.1108/09615531011024039.
DOI: 10.1108/09615531011024039
Google Scholar
[11]
D.C. Jogie, B. Bhatt, The study of fluid flow and heat transfer of a viscous incompressible fluid between a rotating solid disk and a stationary permeable disk using the Brinkman-Darcy model, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 96 (5) (2016) 620–632. doi: https://doi.org/10.1002/zamm.201400089.
DOI: 10.1002/zamm.201400089
Google Scholar
[12]
D. Nield, A. Bejan, Convection in Porous Media, third ed., New York, Springer Science+Business Media, Inc, (2006).
Google Scholar
[13]
S. Eskinazi, Vector Mechanics of Fluids and Magnetofluids, New York, Academic Press, (1967).
Google Scholar
[14]
P.D. Verma, B.S. Bhatt, On the steady flow between a rotating and a stationary naturally permeable disc, International Journal of Engineering Science 13(9-10) (1975) 869–879.
DOI: 10.1016/0020-7225(75)90087-7
Google Scholar
[15]
G. Batchelor, Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow, Q. J. Mech. Appl. Maths 4 (1951) 29–41.
DOI: 10.1093/qjmam/4.1.29
Google Scholar
[16]
D.V. Krishna, D.R.V. Prasada Rao, A.S. Ramachandra Murthy, Hydromagnetic convection flow through a porous medium in axially varying pipe, Journal of Engineering Physics and Thermophysics 79(4) (2006) 727.
DOI: 10.1007/s10891-006-0158-2
Google Scholar