[1]
M. Shafi, A.F. Molisch, P.J. Smith, T. Haustein, P. Zhu, P.D. Silva, F. Tufvesson, A. Benjebbour, and G. Wunder. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. on Selected Areas in Communications. 35(2017) 1201-1221.
DOI: 10.1109/jsac.2017.2692307
Google Scholar
[2]
M. Almarashli and S. Lindenmeier. Evaluation of vehicular 4G/5G-MIMO antennas via data-rate measurement in an emulated urban test drive. 48th European Microwave Conference, Spain. (2018) 300-303.
DOI: 10.23919/eumc.2018.8541757
Google Scholar
[3]
J. Isabona and V.M. Srivastava. Downlink massive MIMO systems: achievable sum rates and energy efficiency perspective for future 5G systems. Wireless personal Communication. 96 (2017) 2779-2796.
DOI: 10.1007/s11277-017-4324-y
Google Scholar
[4]
S. Shinjo, K. Nakatani, J. Kamioka, R. Komaru, H. Noto, H. Nakamizo, S. Yamaguchi, S. Uchida, A. Okazaki, and K. Yamanaka. A 28GHz-band highly integrated GaAs RF frontend module for massive MIMO in 5G. IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies, Ireland. (2018) 1-3.
DOI: 10.1109/imws-5g.2018.8484564
Google Scholar
[5]
E.O. Omoru and V.M. Srivastava. MOSFET based absorber of reflected signal in 5G massive MIMO base station - A circuit perspective. J. of Communication. 15 (2020) 833-840.
DOI: 10.12720/jcm.15.11.833-840
Google Scholar
[6]
V.M. Srivastava and G. Singh. MOSFET technologies for double-pole four throw radio frequency switch, Springer International Publishing, Switzerland (2013).
DOI: 10.1007/978-3-319-01165-3_4
Google Scholar
[7]
H. Cao, C. Zhu, J. Liu, L. Tao, X. Wu, and X. Tan. A novel rectifying circuit with circulator in microwave power transmission. IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, China. (2016) 1-3.
DOI: 10.1109/imws-amp.2016.7588461
Google Scholar
[8]
A.S. Sedra and K.C. Smith. Microelectronic circuits: theory and applications. 7th Ed. Oxford University Press (2014).
Google Scholar
[9]
E.O. Omoru and V.M. Srivastava. Simulation analysis of MOSFET based absorber for reflected RF signal in 5G massive MIMO base station. Int. J. of Emerging Trends in Engineering Research. 8 (2020) 6488-6495.
DOI: 10.30534/ijeter/2020/251892020
Google Scholar
[10]
W. Chen, F. C. Lee and T. Yamauchi. An improved charge pump, electronic ballast with low THD and low crest factor. IEEE Transactions on Power Electronics. 5 (1997) 867-875.
DOI: 10.1109/63.623005
Google Scholar
[11]
Y. Yang, F. Zhang, K. Tao, B. Sanchez, H. Wen, and Z. Teng. An improved crest factor minimization algorithm to synthesize multisines with arbitrary spectrum. Physiological Measurement. 36 (2015) 895-910.
DOI: 10.1088/0967-3334/36/5/895
Google Scholar
[12]
P. Pejovic, P. Bozovic and D. Shmilovitz. Low-harmonic, three-phase rectifier that applies current injection and a passive resistance emulator. IEEE Power Electronics Letters. 3 (2005) 96-100.
DOI: 10.1109/lpel.2005.858411
Google Scholar
[13]
M.H. Rashid. Power electronics: devices, circuits and applications. 3rd Ed., Pearson, India (2011).
Google Scholar
[14]
L.A. Filinskyy. Microwave propagation in specimens of foam materials located in rectangular waveguide. 6th Int. Conf. on Ultrawideband and Ultrashort Impulse Signals, Ukraine. (2012) 108-110.
DOI: 10.1109/uwbusis.2012.6379748
Google Scholar
[15]
V. Rodriguez. Validation of a method for predicting anechoic chamber performance: A technique that uses polynomial approximations for RF absorber reflectivity. IEEE Antennas and Propagation Magazine. 4 (2018) 31-40.
DOI: 10.1109/map.2018.2839895
Google Scholar