[1]
N.M. Schrier, J.W. Wannop, R.T. Lewinson, J. Worobets, D. Stefanyshyn, Shoe traction and surface compliance affect performance of soccer-related movements, Footwear Science (2014), 6(2), 69-80.
DOI: 10.1080/19424280.2014.886302
Google Scholar
[2]
G.L. Gains, A.N. Swedenhjelm, J.L. Mayhew, H.M. Bird, J.J. Houser, Comparison of speed and agility performance of college football players on field turf and natural grass, Journal of Strength & Conditioning Research (2010), 24(10), 2613-2617.
DOI: 10.1519/jsc.0b013e3181eccdf8
Google Scholar
[3]
C. Müller, T. Sterzing, J. Lange, T.L. Milani, Comprehensive evaluation of player-surface interaction on artificial soccer turf, Sports Biomechanics (2010), 9(9), 193-205.
DOI: 10.1080/14763141.2010.511679
Google Scholar
[4]
W. Potthast, R. Verhelst, M. Hughes, K. Stone, D.D. Clercq, Football-specific evaluation of player-surface interaction on different football turf system, Sports Technology (2010), 3(1), 5-12.
DOI: 10.1080/19346190.2010.504278
Google Scholar
[5]
S.T. Bramwell, R.K. Requa, J.G. Garrick, High school football injuries: a pilot comparison of playing surfaces, Medicine & Science in Sports (1972), 4(4), 166-179.
DOI: 10.1249/00005768-197200430-00011
Google Scholar
[6]
M.L. Skovron, I.M. Levy, J. Agel, Living with artificial grass: a knowledge update. Part 2: epidemiology, American Journal of Sports Medicine (1990), 18(5), 510-523.
DOI: 10.1177/036354659001800511
Google Scholar
[7]
T. Soligard, R. Bahr, T.E. Andersen, Injury risk on artificial turf and grass in youth tournament football, Scandinavian Journal of Medicine & Science in Sports (2012), 22(3), 356–361.
DOI: 10.1111/j.1600-0838.2010.01174.x
Google Scholar
[8]
A.V. Dowling, C. Stefano, A.M.W. Chaudhari, T.P. Andriacchi, Shoe-surface friction influences movement strategies during a side-step cutting task: implications for anterior cruciate ligament injury risk, American Journal of Sports Medicine (2010).
DOI: 10.1177/0363546509348374
Google Scholar
[9]
S.T. Joseph, Q. Theodore, Effect of shoe type and cleat length on incidence and severity of knee injuries among high school football players, Research Quarterly (1971), 42(2), 203-211.
DOI: 10.1080/10671188.1971.10615058
Google Scholar
[10]
G. Luo, D. Stefanyshyn, Identification of critical traction values for maximum athletic performance, Footwear Science (2011), 3(3), 127-138.
DOI: 10.1080/19424280.2011.639807
Google Scholar
[11]
G.S. Krahenbuhl, Speed of movement with varying footwear conditions on synthetic turf and natural grass, Research Quarterly (1974), 45 (1).
DOI: 10.1080/10671188.1974.10615237
Google Scholar
[12]
T. Sterzing, C. Müller, H.M. Ewald, L.M. Thomas, Actual and perceived running performance in soccer shoes: a series of eight studies, Footwear Science (2009), 1(1), 5-17.
DOI: 10.1080/19424280902915350
Google Scholar
[13]
R.W. Bonstingl, C.A. Morehouse, B.W. Niebel, Torques developed by different types of shoes on various playing surfaces, Medicine & Science in Sports (1975), 7(2), 127-31.
DOI: 10.1249/00005768-197500720-00022
Google Scholar
[14]
N. Smith, R. Dyson, L. Janaway, Ground reaction force measures when running in soccer boots and soccer training shoes on a natural turf surface. Sports Engineering (2004), 7(3), 159-167.
DOI: 10.1007/bf02844054
Google Scholar
[15]
T. Grund, V. Senner, Traction behavior of soccer shoe stud designs under different game-relevant loading conditions, Procedia Engineering (2010), 2(2), 2783-2788.
DOI: 10.1016/j.proeng.2010.04.066
Google Scholar
[16]
B. Zarins, C.R. Rowe, B.A. Harris, M.P. Watkins, Rotational motion of the knee. Archives of Physical Medicine & Rehabilitation (1983), 11(3), 152-156.
Google Scholar
[17]
T.F. Besier, D.G. Lloyd, J.L. Cochrane, T.R. Ackland, External loading of the knee joint during running and cutting maneuvers, Medicine & Science in Sports & Exercise (2001), 33(7), 1168-1175.
DOI: 10.1097/00005768-200107000-00014
Google Scholar
[18]
S.G. Mclean, A. Su, A.J.V.D. Bogert, Development and validation of a 3-d model to predict knee joint loading during dynamic movement, Journal of Biomechanical Engineering (2003), 125(6), 864-74.
DOI: 10.1115/1.1634282
Google Scholar
[19]
D. Mcghie, G. Ettema, Biomechanical analysis of surface-athlete impacts on third-generation artificial turf, American Journal of Sports Medicine (2013), 41(1), 177-185.
DOI: 10.1177/0363546512464697
Google Scholar
[20]
G. Balazs, G. Pavey, A. Brelin, A. Pickett, D. Keblish, J. Rue, Risk of anterior cruciate ligament injury in athletes on synthetic playing surfaces: a systematic review, American Journal of Sports Medicine (2014), 43(7), 1798-1804.
DOI: 10.1177/0363546514545864
Google Scholar
[21]
J.L. Cochrane, D.G. Lloyd, A. Buttfield, H. Seward, J. Mcgivern, Characteristics of anterior cruciate ligament injuries in Australian football, Journal of Science & Medicine in Sport (2007), 10(2), 96-104.
DOI: 10.1016/j.jsams.2006.05.015
Google Scholar
[22]
O.E. Odd, M. Grethe, E. Lars, B. Roald, Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis, American Journal of Sports Medicine (2004), 32(4), 1002-1012.
DOI: 10.1177/0363546503261724
Google Scholar
[23]
A. Chaudhari, T. Andriacchi, The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury, Journal of Biomechanics (2006), 39(2), 330-338.
DOI: 10.1016/j.jbiomech.2004.11.013
Google Scholar
[24]
S. Mclean, X. Huang, D.A. Bogert, Investigating isolated neuromuscular control contributions to non-contact anterior cruciate ligament injury risk via computer simulation methods, Clinical Biomechanics (2008), 23(7), 926-936.
DOI: 10.1016/j.clinbiomech.2008.03.072
Google Scholar
[25]
C. Morio, M.J. Lake, N. Gueguen, G. Rao, L. Baly, The influence of footwear on foot motion during walking and running, Journal of Biomechanics (2009), 42(13), 2081-(2088).
DOI: 10.1016/j.jbiomech.2009.06.015
Google Scholar
[26]
K.R. Ford, N.A. Manson, B.J. Evans, G.D. Myer, R. C. Gwin, R.S. Heidt, Comparison of in-shoe foot loading patterns on natural grass and synthetic turf, Journal of Science & Medicine in Sport (2007), 9(6), 433-40.
DOI: 10.1016/j.jsams.2006.03.019
Google Scholar
[27]
P.L. Wong, K. Chamari, A. Chaouachi, D.W. Mao, U. Wisløff, Y. Hong, Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements, British Journal of Sports Medicine (2007), 41(2), 84-92.
DOI: 10.1136/bjsm.2006.030908
Google Scholar
[28]
D.D. Clercq, G. Debuyck, J. Gerlo, S. Rambour, V. Segers, I.V. Caekenberghe, Cutting performance wearing different studded soccer shoes on dry and wet artificial turf, Footwear science (2014), 6(6), 81-87.
DOI: 10.1080/19424280.2014.895056
Google Scholar
[29]
L. Griffin, J.M. Agel, E. Arendt, R. Dick, W. Garrett, J. Garrick, Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies, Journal of the American Academy of Orthopaedic Surgeons (2000), 8(3), 141-50.
DOI: 10.5435/00124635-200005000-00001
Google Scholar
[30]
C. Müller, T. Sterzing, T. Milani, Stud length and stud geometry of soccer boots influence running performance on third generation artificial turf, In ISBS-Conference Proceedings Archive (2009), 1(1).
Google Scholar
[31]
N. Keijsers, N. Stolwijk, J. Louwerens, J. Duysens, Classification of forefoot pain based on plantar pressure measurements, Clinical Biomechanics (2013), 28(3), 350-356.
DOI: 10.1016/j.clinbiomech.2013.01.012
Google Scholar
[32]
R.D. D'Ambrosia, Orthotic devices in running injuries, Clinics in sports medicine (1985), 4(4), 611-618.
DOI: 10.1016/s0278-5919(20)31180-7
Google Scholar
[33]
B.P. Boden, G.S. Dean, J.A. Feagin, W.E. Garrett, Mechanisms of anterior cruciate ligament injury, Orthopedics (2000), 23(6), 573-8.
DOI: 10.3928/0147-7447-20000601-15
Google Scholar
[34]
S.G. Mclean, X. Huang, A. Su, Sagittal plane biomechanics cannot injure the ACL during sidestep cutting, Clinical Biomechanics (2004), 19(8), 828-38.
DOI: 10.1016/j.clinbiomech.2004.06.006
Google Scholar
[35]
J. Bentley, A. Ramanathan, G. Arnold, W. Wang, R. Abboud, Harmful cleats of football boots: A biomechanical evaluation, Foot and Ankle Surgery (2011), 17(3), 140-144.
DOI: 10.1016/j.fas.2010.04.001
Google Scholar
[36]
P. Malliaras, J.L. Cook, P. Kent, Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players, Journal of science and medicine in sport (2006), 9(4), 304-309.
DOI: 10.1016/j.jsams.2006.03.015
Google Scholar
[37]
I.C. Sacco, H.Y. Takahasi, E.Y. Suda, L.R. Battistella, C.A. Kavamoto, Lopes, Ground reaction force in basketball cutting maneuvers with and without ankle bracing and taping. Sao Paulo Medical Journal (2006), 124(5), 245-52.
DOI: 10.1590/s1516-31802006000500002
Google Scholar
[38]
Q. Mei, J. Fernandez, W. Fu, N. Feng, Y. Gu, A comparative biomechanical analysis of habitually unshod and shod runners based on a foot morphological difference, Human movement science (2015), 42, 38-53.
DOI: 10.1016/j.humov.2015.04.007
Google Scholar
[39]
D. Lieberman, M. Venkade, W. Werbel, A. Daoud, S. Andrea, I. Davis, R. Eni, Y. Pitsiladis, Foot strike patterns and collision forces in habitually barefoot versus shod runners, Nature (2010), 463(7280).
DOI: 10.1038/nature08723
Google Scholar
[40]
G. Grouios, Corns and calluses in athletes' feet: a cause for concern, The Foot (2004), 14(4), 175-184.
DOI: 10.1016/j.foot.2004.07.005
Google Scholar
[41]
B. Barry, P. Milburn, Tribology, friction and traction: understanding shoe-surface interaction, Footwear Science (2013), 5(3), 137-145.
DOI: 10.1080/19424280.2013.797030
Google Scholar
[42]
Alex, J.Y. Lee, J.H. Chou, Y.F. Liu, W.H. Lin, T.Y. Shiang, Correlation Between Treadmill Acceleration, Plantar Pressure, and Ground reaction Force During Running, Springer Paris (2008), 52.
DOI: 10.1007/978-2-287-09411-8_34
Google Scholar