Effects of Different Soccer Boots on Biomechanical Characteristics of Cutting Movement on Artificial Turf

Article Preview

Abstract:

The purpose of this study was to testing for difference in performance and injury risks between three different outsole configuration soccer boots on artificial turf. Fourteen experienced soccer players performed 45° cut test. They selected soccer boots with artificial ground design (AG), turf cleats boots (TF) and indoor boots (IN) randomly. A Vicon three dimension motion analysis system was used to capture kinematic data and Kistler force platform was used to record the ground reaction force. Novel Pedar-X insole plantar pressure measurement system was utilized to collect the plantar pressure synchronized. During 45° cut, artificial ground design (AG) showed significantly smaller peak knee flexion (p<0.001) and greater abduction angles (p<0.001) than indoor boots (IN). AG showed significantly greater vertical average loading rate (VALR) compared with TF (p=0.005) and IN (p=0.003). The results of plantar pressure found that AG showed the highest peak pressure and force-time integral in the heel (H) and medial forefoot (MFF). Artificial ground design (AG) and turf cleats (TF) may offer a performance benefit on artificial turf compared to IN. In summary, AG may enhance athletic performance on artificial turf, but also may undertake higher risks of non-contact injuries compared with TF and IN.

You might also be interested in these eBooks

Info:

Pages:

24-35

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.M. Schrier, J.W. Wannop, R.T. Lewinson, J. Worobets, D. Stefanyshyn, Shoe traction and surface compliance affect performance of soccer-related movements, Footwear Science (2014), 6(2), 69-80.

DOI: 10.1080/19424280.2014.886302

Google Scholar

[2] G.L. Gains, A.N. Swedenhjelm, J.L. Mayhew, H.M. Bird, J.J. Houser, Comparison of speed and agility performance of college football players on field turf and natural grass, Journal of Strength & Conditioning Research (2010), 24(10), 2613-2617.

DOI: 10.1519/jsc.0b013e3181eccdf8

Google Scholar

[3] C. Müller, T. Sterzing, J. Lange, T.L. Milani, Comprehensive evaluation of player-surface interaction on artificial soccer turf, Sports Biomechanics (2010), 9(9), 193-205.

DOI: 10.1080/14763141.2010.511679

Google Scholar

[4] W. Potthast, R. Verhelst, M. Hughes, K. Stone, D.D. Clercq, Football-specific evaluation of player-surface interaction on different football turf system, Sports Technology (2010), 3(1), 5-12.

DOI: 10.1080/19346190.2010.504278

Google Scholar

[5] S.T. Bramwell, R.K. Requa, J.G. Garrick, High school football injuries: a pilot comparison of playing surfaces, Medicine & Science in Sports (1972), 4(4), 166-179.

DOI: 10.1249/00005768-197200430-00011

Google Scholar

[6] M.L. Skovron, I.M. Levy, J. Agel, Living with artificial grass: a knowledge update. Part 2: epidemiology, American Journal of Sports Medicine (1990), 18(5), 510-523.

DOI: 10.1177/036354659001800511

Google Scholar

[7] T. Soligard, R. Bahr, T.E. Andersen, Injury risk on artificial turf and grass in youth tournament football, Scandinavian Journal of Medicine & Science in Sports (2012), 22(3), 356–361.

DOI: 10.1111/j.1600-0838.2010.01174.x

Google Scholar

[8] A.V. Dowling, C. Stefano, A.M.W. Chaudhari, T.P. Andriacchi, Shoe-surface friction influences movement strategies during a side-step cutting task: implications for anterior cruciate ligament injury risk, American Journal of Sports Medicine (2010).

DOI: 10.1177/0363546509348374

Google Scholar

[9] S.T. Joseph, Q. Theodore, Effect of shoe type and cleat length on incidence and severity of knee injuries among high school football players, Research Quarterly (1971), 42(2), 203-211.

DOI: 10.1080/10671188.1971.10615058

Google Scholar

[10] G. Luo, D. Stefanyshyn, Identification of critical traction values for maximum athletic performance, Footwear Science (2011), 3(3), 127-138.

DOI: 10.1080/19424280.2011.639807

Google Scholar

[11] G.S. Krahenbuhl, Speed of movement with varying footwear conditions on synthetic turf and natural grass, Research Quarterly (1974), 45 (1).

DOI: 10.1080/10671188.1974.10615237

Google Scholar

[12] T. Sterzing, C. Müller, H.M. Ewald, L.M. Thomas, Actual and perceived running performance in soccer shoes: a series of eight studies, Footwear Science (2009), 1(1), 5-17.

DOI: 10.1080/19424280902915350

Google Scholar

[13] R.W. Bonstingl, C.A. Morehouse, B.W. Niebel, Torques developed by different types of shoes on various playing surfaces, Medicine & Science in Sports (1975), 7(2), 127-31.

DOI: 10.1249/00005768-197500720-00022

Google Scholar

[14] N. Smith, R. Dyson, L. Janaway, Ground reaction force measures when running in soccer boots and soccer training shoes on a natural turf surface. Sports Engineering (2004), 7(3), 159-167.

DOI: 10.1007/bf02844054

Google Scholar

[15] T. Grund, V. Senner, Traction behavior of soccer shoe stud designs under different game-relevant loading conditions, Procedia Engineering (2010), 2(2), 2783-2788.

DOI: 10.1016/j.proeng.2010.04.066

Google Scholar

[16] B. Zarins, C.R. Rowe, B.A. Harris, M.P. Watkins, Rotational motion of the knee. Archives of Physical Medicine & Rehabilitation (1983), 11(3), 152-156.

Google Scholar

[17] T.F. Besier, D.G. Lloyd, J.L. Cochrane, T.R. Ackland, External loading of the knee joint during running and cutting maneuvers, Medicine & Science in Sports & Exercise (2001), 33(7), 1168-1175.

DOI: 10.1097/00005768-200107000-00014

Google Scholar

[18] S.G. Mclean, A. Su, A.J.V.D. Bogert, Development and validation of a 3-d model to predict knee joint loading during dynamic movement, Journal of Biomechanical Engineering (2003), 125(6), 864-74.

DOI: 10.1115/1.1634282

Google Scholar

[19] D. Mcghie, G. Ettema, Biomechanical analysis of surface-athlete impacts on third-generation artificial turf, American Journal of Sports Medicine (2013), 41(1), 177-185.

DOI: 10.1177/0363546512464697

Google Scholar

[20] G. Balazs, G. Pavey, A. Brelin, A. Pickett, D. Keblish, J. Rue, Risk of anterior cruciate ligament injury in athletes on synthetic playing surfaces: a systematic review, American Journal of Sports Medicine (2014), 43(7), 1798-1804.

DOI: 10.1177/0363546514545864

Google Scholar

[21] J.L. Cochrane, D.G. Lloyd, A. Buttfield, H. Seward, J. Mcgivern, Characteristics of anterior cruciate ligament injuries in Australian football, Journal of Science & Medicine in Sport (2007), 10(2), 96-104.

DOI: 10.1016/j.jsams.2006.05.015

Google Scholar

[22] O.E. Odd, M. Grethe, E. Lars, B. Roald, Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis, American Journal of Sports Medicine (2004), 32(4), 1002-1012.

DOI: 10.1177/0363546503261724

Google Scholar

[23] A. Chaudhari, T. Andriacchi, The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury, Journal of Biomechanics (2006), 39(2), 330-338.

DOI: 10.1016/j.jbiomech.2004.11.013

Google Scholar

[24] S. Mclean, X. Huang, D.A. Bogert, Investigating isolated neuromuscular control contributions to non-contact anterior cruciate ligament injury risk via computer simulation methods, Clinical Biomechanics (2008), 23(7), 926-936.

DOI: 10.1016/j.clinbiomech.2008.03.072

Google Scholar

[25] C. Morio, M.J. Lake, N. Gueguen, G. Rao, L. Baly, The influence of footwear on foot motion during walking and running, Journal of Biomechanics (2009), 42(13), 2081-(2088).

DOI: 10.1016/j.jbiomech.2009.06.015

Google Scholar

[26] K.R. Ford, N.A. Manson, B.J. Evans, G.D. Myer, R. C. Gwin, R.S. Heidt, Comparison of in-shoe foot loading patterns on natural grass and synthetic turf, Journal of Science & Medicine in Sport (2007), 9(6), 433-40.

DOI: 10.1016/j.jsams.2006.03.019

Google Scholar

[27] P.L. Wong, K. Chamari, A. Chaouachi, D.W. Mao, U. Wisløff, Y. Hong, Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements, British Journal of Sports Medicine (2007), 41(2), 84-92.

DOI: 10.1136/bjsm.2006.030908

Google Scholar

[28] D.D. Clercq, G. Debuyck, J. Gerlo, S. Rambour, V. Segers, I.V. Caekenberghe, Cutting performance wearing different studded soccer shoes on dry and wet artificial turf, Footwear science (2014), 6(6), 81-87.

DOI: 10.1080/19424280.2014.895056

Google Scholar

[29] L. Griffin, J.M. Agel, E. Arendt, R. Dick, W. Garrett, J. Garrick, Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies, Journal of the American Academy of Orthopaedic Surgeons (2000), 8(3), 141-50.

DOI: 10.5435/00124635-200005000-00001

Google Scholar

[30] C. Müller, T. Sterzing, T. Milani, Stud length and stud geometry of soccer boots influence running performance on third generation artificial turf, In ISBS-Conference Proceedings Archive (2009), 1(1).

Google Scholar

[31] N. Keijsers, N. Stolwijk, J. Louwerens, J. Duysens, Classification of forefoot pain based on plantar pressure measurements, Clinical Biomechanics (2013), 28(3), 350-356.

DOI: 10.1016/j.clinbiomech.2013.01.012

Google Scholar

[32] R.D. D'Ambrosia, Orthotic devices in running injuries, Clinics in sports medicine (1985), 4(4), 611-618.

DOI: 10.1016/s0278-5919(20)31180-7

Google Scholar

[33] B.P. Boden, G.S. Dean, J.A. Feagin, W.E. Garrett, Mechanisms of anterior cruciate ligament injury, Orthopedics (2000), 23(6), 573-8.

DOI: 10.3928/0147-7447-20000601-15

Google Scholar

[34] S.G. Mclean, X. Huang, A. Su, Sagittal plane biomechanics cannot injure the ACL during sidestep cutting, Clinical Biomechanics (2004), 19(8), 828-38.

DOI: 10.1016/j.clinbiomech.2004.06.006

Google Scholar

[35] J. Bentley, A. Ramanathan, G. Arnold, W. Wang, R. Abboud, Harmful cleats of football boots: A biomechanical evaluation, Foot and Ankle Surgery (2011), 17(3), 140-144.

DOI: 10.1016/j.fas.2010.04.001

Google Scholar

[36] P. Malliaras, J.L. Cook, P. Kent, Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players, Journal of science and medicine in sport (2006), 9(4), 304-309.

DOI: 10.1016/j.jsams.2006.03.015

Google Scholar

[37] I.C. Sacco, H.Y. Takahasi, E.Y. Suda, L.R. Battistella, C.A. Kavamoto, Lopes, Ground reaction force in basketball cutting maneuvers with and without ankle bracing and taping. Sao Paulo Medical Journal (2006), 124(5), 245-52.

DOI: 10.1590/s1516-31802006000500002

Google Scholar

[38] Q. Mei, J. Fernandez, W. Fu, N. Feng, Y. Gu, A comparative biomechanical analysis of habitually unshod and shod runners based on a foot morphological difference, Human movement science (2015), 42, 38-53.

DOI: 10.1016/j.humov.2015.04.007

Google Scholar

[39] D. Lieberman, M. Venkade, W. Werbel, A. Daoud, S. Andrea, I. Davis, R. Eni, Y. Pitsiladis, Foot strike patterns and collision forces in habitually barefoot versus shod runners, Nature (2010), 463(7280).

DOI: 10.1038/nature08723

Google Scholar

[40] G. Grouios, Corns and calluses in athletes' feet: a cause for concern, The Foot (2004), 14(4), 175-184.

DOI: 10.1016/j.foot.2004.07.005

Google Scholar

[41] B. Barry, P. Milburn, Tribology, friction and traction: understanding shoe-surface interaction, Footwear Science (2013), 5(3), 137-145.

DOI: 10.1080/19424280.2013.797030

Google Scholar

[42] Alex, J.Y. Lee, J.H. Chou, Y.F. Liu, W.H. Lin, T.Y. Shiang, Correlation Between Treadmill Acceleration, Plantar Pressure, and Ground reaction Force During Running, Springer Paris (2008), 52.

DOI: 10.1007/978-2-287-09411-8_34

Google Scholar