Numerical Modelling of AISI 316L Cardiovascular Stent Behaviour under Blood Pressure and Restenosis Loadings

Article Preview

Abstract:

In the present study, ABAQUS finite element modelling was used to explore the durability of cardiovascular stent made of AISI 316L. It was found that the blood pressure loading never causes the fracture of the stent. This result was confirmed by the application of two critical plane approaches and one mean stress criterion. However, when subjected to restenosis compressive loading the stent was found to experience an in-service failure. The last proved to be dependent on the stent diameter reduction, rate and location of restenosis. Since restenosis forms gradually and randomly within the artery, two distributions were considered and investigated. The eccentric restenosis turned out to be more deleterious than the concentric one.

You might also be interested in these eBooks

Info:

Pages:

60-76

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Migliavacca, L. Petrini,V. Montanari,I. Quagliana, F. Auricchio, G. Dubini, A predictive study of the mechanical behaviour of coronary stents by computer modelling, Medical Engineering & Physics 27 (2005) 13-18.

DOI: 10.1016/j.medengphy.2004.08.012

Google Scholar

[2] F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, R. Pietrabissa, Mechanical behavior of coronary stents investigated through the finite element method, Journal of Biomechanics 35 (2002) 803-811.

DOI: 10.1016/s0021-9290(02)00033-7

Google Scholar

[3] M.R. Bennet, M. O'Sullivan, Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy, Pharmacology & Therapeutics 91 (2001) 149-166.

DOI: 10.1016/s0163-7258(01)00153-x

Google Scholar

[4] S. Schievano, G. Parenzan, F. Migliavacca, L. Petrini, G. Dubini, P. Bonheeffer, Stent fracture in percutaneous pulmonary valve implantation: a finite element study, Journal of Biomechanics 39 (2006) 292-293.

DOI: 10.1016/s0021-9290(06)84134-5

Google Scholar

[5] C.A. Sweeney, P.E. McHugh, J.P. McGarry, S.B. Leen, Micromechanical methodology for fatigue in cardiovascular stents, International Journal of Fatigue 44 (2012) 202-216.

DOI: 10.1016/j.ijfatigue.2012.04.022

Google Scholar

[6] M. Azaouzi, A. Makradi, J. Petit, S. Belouettar, O. Polit, On the numerical investigation of cardiovascular balloon-expandable stent using finite element method, Computational Materials Science 79 (2013) 326-335.

DOI: 10.1016/j.commatsci.2013.05.043

Google Scholar

[7] F. Shaikh, R. Maddikunta, M. Djelmami-Hani, J. Solis, S. Allaqaband, T. Bajwa, Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis? Catheterization and Cardiovascular Interventions 71 (2008) 614-618.

DOI: 10.1002/ccd.21371

Google Scholar

[8] G. Sianos, S. Hofma, J.M.R. Ligthart, F. Saia, A. Hoye, P.A. Lemos, P.W. Serruys, Stent fracture and restenosis in the drug-eluting stent era, Catheterization and Cardiovascular Interventions 61 (2004) 111-116.

DOI: 10.1002/ccd.10709

Google Scholar

[9] C. Lallya, F. Dolanb, P.J. Prendergast, Cardiovascular stent design and vessel stresses: a finite element analysis, Journal of Biomechanics 38 (2005) 1574–1581.

DOI: 10.1016/j.jbiomech.2004.07.022

Google Scholar

[10] ABAQUS/Standard. Documentation for version 6. 11. Dassault System Simulia.

Google Scholar

[11] G.A. Holzapfel, G. Sommer, C.T. Gasser, P. Regitnig, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Journal of Biomechanics 289 (2005).

DOI: 10.1152/ajpheart.00934.2004

Google Scholar

[12] K.S. Matthys, J. Alastruey, J. Peiro, A.W. Khir, P. Segers, P.R. Verdonck, K.H. Parker, S.J. Sherwin, Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements, Journal of Biomechanics 40 (2007).

DOI: 10.1016/j.jbiomech.2007.05.027

Google Scholar

[13] K. Dang Van, Macro-micro approach in high-cycle multiaxial fatigue. In: D.L. McDowell, R. Ellis, editors. Advances in multi-axial fatigue. ASTM, (1993) 120-130.

DOI: 10.1520/stp24799s

Google Scholar

[14] W.N. Findley, Fatigue of metals under combination of stresses, Transaction of the American Society of Mechanical Engineers 79 (1957) 1337-1348.

Google Scholar

[15] J. Goodman, Mechanics applied to engineering, Longmans, Greens and Company, London (1914).

Google Scholar

[16] S. Wiersma, F. Dolan, D. Taylor, Fatigue and fracture in materials used for micro-scale biomedical components, Biomedical Materials Engineering 16 (2006) 137-146.

Google Scholar

[17] A. Chamat, M. Abbadi, J. Gilgert, F. Cocheteux, Z. Azari, A new non-local criterion in high-cycle multiaxial fatigue for non-proportional loadings, International Journal of Fatigue 29 (2007) 1465-1474.

DOI: 10.1016/j.ijfatigue.2006.10.033

Google Scholar

[18] G.D. Dangas, B.E. Claessen, A. Caixeta, E.A. Sanidas, G.S. Mintz, R. Mehran, In-stent restenosis in the drug-eluting stent era, Journal of the American College of Cardiology, 56 (2010) 1897-(1907).

DOI: 10.1016/j.jacc.2010.07.028

Google Scholar

[19] M.R. Bennett, In-stent stenosis: Pathology and implications for the development of drug eluting stents, Heart 89 (2003) 218-224.

DOI: 10.1136/heart.89.2.218

Google Scholar

[20] H. Hamid, J. Coltart, Miracle stents – a future without restenosis, McGill Journal of Medicine 10 (2007) 105-111.

DOI: 10.26443/mjm.v10i2.446

Google Scholar

[21] N. Labropoulos, M. Borge, K. Pierce, P.J. Pappas, Criteria for defining significant central vein stenosis with duplex ultrasound, Journal of Vascular Surgery 46 (2007) 101-107.

DOI: 10.1016/j.jvs.2007.02.062

Google Scholar

[22] A.H. Mahnken, CT imaging of coronary stents: Past, present, and future, ISRN Cardiology 2012 (2012) 1-12.

DOI: 10.5402/2012/139823

Google Scholar

[23] R.E. Kuntz, R.D. Safian, J.P. Carrozza,. R.F. Fishman,. M. Mansour, D.S. Baim, The importance of acute luminal diameter in determining restenosis after coronary atherectomy or stenting, Circulation 86 (1992) 1827-1835.

DOI: 10.1161/01.cir.86.6.1827

Google Scholar

[24] A. Wang, R.A. Krasuski, J.J. Warner, K. Pieper, K.B. Kisslo, T.M. Bashore, J.K. Harrison, Serial echocardigraphic evaluation of restenosis after successful percutaneous mitral commissurotomy, Journal of the American College of Cardiology, 39 (2002).

DOI: 10.1016/s0735-1097(01)01726-0

Google Scholar

[25] B.F. Waller, The eccentric coronary atherosclerotic plaque: Morphologic observations and clinical relevance, Clinical Cardiology, 12 (1989) 14-20.

DOI: 10.1002/clc.4960120103

Google Scholar