[1]
Kumar S, Dory YL, Lepage M, Zhao Y. Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo-and ph sensitive release of dye molecules. Macromolecules. 2011; 44: 7385-7393.
DOI: 10.1021/ma2010102
Google Scholar
[2]
Medeirosa SF, Santosa AM, Fessib H, Elaissari. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2010; 403: 139-1361.
Google Scholar
[3]
Mendes PM. Stimuli-responsive surfaces for bio-applications. Chem Soc Rev. 2008; 37: 2512-2529.
Google Scholar
[4]
Cole MA, Voelcker NH, Thissen H, Griesser HJ. Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials. 2009; 30: 1827–1850.
DOI: 10.1016/j.biomaterials.2008.12.026
Google Scholar
[5]
Schnabel W. Polymers and Light: Wiley Inter Science; (2007).
Google Scholar
[6]
Szymannski W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem Rev. 2012; 113: 6114−6178.
DOI: 10.1021/cr300179f
Google Scholar
[7]
Liu Z, Tang Y, Li N, Lu L, Deng J, Cai Y. Modulating Light-Tunable Acid Sensitivity of a Bioinspired Polymer Simply by Adjusting the Position of a Single Methoxy Substituent. J Polym Sci Pol Chem. 2011; 50: 495-508.
DOI: 10.1002/pola.25057
Google Scholar
[8]
Shi D, Matsusaki M, Akashi M. Photo-tunable protein release from biodegradable nanoparticles composed of cinnamic acid derivatives. J Control Release. 2011; 149: 182-189.
DOI: 10.1016/j.jconrel.2010.08.009
Google Scholar
[9]
Trenor SR, Shultz AR, Love BJ, Long TE. Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds. Chem Rev. 2004; 104: 3059-3077.
DOI: 10.1021/cr030037c
Google Scholar
[10]
Mahimwalla Z, Mamiya KGYJ-i, Shishido A, Priimagi A, Barrett CJ. Azobenzene photomechanics: prospects and potential applications. Polym Bull. 2012; 69: 967–1006.
DOI: 10.1007/s00289-012-0792-0
Google Scholar
[11]
Kocher C, Wederb C, Smith P. Latent, ultraviolet light absorbers. J Mater Chem. 2003; 13: 9-15.
Google Scholar
[12]
Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem. 2010; 1: 37-54.
DOI: 10.1039/b9py00300b
Google Scholar
[13]
Orain D, Ellard J, Bradley M. Protecting Groups in Solid-Phase Organic Synthesis. J Comb Chem. 2002; 4: 1-16.
DOI: 10.1021/cc0001093
Google Scholar
[14]
Frutos AG, Brockman JM, Corn RM. Reversible Protection and Reactive Patterning of Amine- and Hydroxyl-Terminated Self-Assembled Monolayers on Gold Surfaces for the Fabrication of Biopolymer Arrays. Langmuir. 2000; 16: 2192–2197.
DOI: 10.1021/la990718w
Google Scholar
[15]
Katz JS, Burdick JA. Light-Responsive Biomaterials: Development and Applications. Macromol Biosci. 2009; 10: 339–348.
DOI: 10.1002/mabi.200900297
Google Scholar
[16]
Lambeth RH, Moore JS. Light-Induced Shape Changes in Azobenzene Functionalized Polymers Prepared by Ring-Opening Metathesis Polymerization. Macromolecules. 2007; 40: 1838–1842.
DOI: 10.1021/ma062680h
Google Scholar
[17]
Liu D, Xie Y, Shao H, Prof XJ. Using Azobenzene-Embedded Self-Assembled Monolayers To Photochemically Control Cell Adhesion Reversibly. Angew Chem Int Ed. 2009; 48: 4406-4408.
DOI: 10.1002/anie.200901130
Google Scholar
[18]
Natansohn A, Rochon P. Photoinduced motions in azo-containing polymers. Chem Rev. 2002; 102: 4139-4176.
DOI: 10.1021/cr970155y
Google Scholar
[19]
Beharrya AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011; 40: 4422-4437.
Google Scholar
[20]
Prucker O, Rühe J. Polymer Layers through Self-Assembled Monolayers of Initiators. Langmuir. 1998; 14: 6893–6898.
DOI: 10.1021/la971035o
Google Scholar
[21]
Russew M-M, Hecht S. Photoswitches: From Molecules to Materials. Adv Mater. 2010; 22: 3348–3360.
DOI: 10.1002/adma.200904102
Google Scholar
[22]
Photoinduced Motions in Azo-Containing Polymers. Chem Rev. Almeria Natansohn and Paul Rochon; 102: 4139-4175.
DOI: 10.1021/cr970155y
Google Scholar
[23]
Bian S, Liu W, Williams J, Samuelson L, Kumar J, Tripathy S. Photoinduced Surface Relief Grating on Amorphous Poly(4-phenylazophenol) Films. Chem Mater. 2000; 12: 1585-1590.
DOI: 10.1021/cm000071x
Google Scholar
[24]
Mahimwalla Z, Yager KG, Mamiya J-i, Shishido A, Priimagi A, Barrett CJ. Azobenzene photomechanics: prospects and potential applications. Polym Bull. 2012; 69: 967–1006.
DOI: 10.1007/s00289-012-0792-0
Google Scholar
[25]
Ikeda T, Ube T. Photomobile polymer materials: from nano to macro. Mater Today. 2011; 14: 480-487.
DOI: 10.1016/s1369-7021(11)70212-7
Google Scholar
[26]
Ichimura K. Photoalignment of Liquid-Crystal Systems. Chem Rev. 2000; 100: 1847-1874.
DOI: 10.1021/cr980079e
Google Scholar
[27]
Natansohn A, Rochon P. Photoinduced Motions in Azo-Containing Polymers. Chem Rev. 2002; 102: 4139-4175.
DOI: 10.1021/cr970155y
Google Scholar
[28]
Beharrya AA, Woolley GA. Small molecules in biology themed issue. Chem Soc Rev. 2011; 40: 4422-4437.
Google Scholar
[29]
Arri Priimagi AS. Azopolymer-Based Micro- and Nanopatterning for Photonic Applications. J Polym Sci Part A: Polym Chem. 2013; 52: 163–182.
DOI: 10.1002/polb.23390
Google Scholar
[30]
Chiefari J, Chong YKB, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules. 1998; 31: 5559–5562.
DOI: 10.1021/ma9804951
Google Scholar
[31]
Zhao Y, Ikeada T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals (2009).
Google Scholar
[32]
Schnabel W. Polymers and Light. Book Fundmental and Technical Applications. 2007: 5-400.
Google Scholar
[33]
Liu Z, Tang Y, Li N, Lu L, Deng J, Cai Y. Modulating Light-Tunable Acid Sensitivity of a Bioinspired Polymer Simply by Adjusting the Position of a Single Methoxy Substituent. J Polym SciPart A: Polym Chem. 2011; 50: 495-508.
DOI: 10.1002/pola.25057
Google Scholar
[34]
Andreas Krieg CP, Anja Baumgaertel, Martin D. Hager, C. Remzi Becer and Ulrich S. Schubert. Dual hydrophilic polymers based on (meth)acrylic acid and poly(ethylene glycol) – synthesis and water uptake behavior†. Poly Chem. 2010; 1: 1669-1676.
DOI: 10.1039/c0py00156b
Google Scholar
[35]
Tasolei Sun LF, Xuefeng Gao, Lei Jiang. Bioinspired Surfaces with Special Wettability. Acc Chem Res. 205; 38: 644-652.
DOI: 10.1021/ar040224c
Google Scholar
[36]
Palyvoda O, Bordenyuk AN, Yatawara AK, McCullen E, Chen C-C, Benderskii AV, et al. Molecular Organization in SAMs Used for Neuronal Cell Growth. Langmuir. 2008; 24: 4097-4106.
DOI: 10.1021/la7032675
Google Scholar
[37]
Mu L, Liu Y, Cai S, Kong J. A Smart Surface in a Microfluidic Chip for Controlled Protein Separation Chem Eur J. 2007; 13: 113-120.
DOI: 10.1002/chem.200601624
Google Scholar
[38]
Feringa Wrabl. Light Switching of Molecules on Surfaces. Annu Rev Phys Chem. 2009; 60: 407–428.
DOI: 10.1146/annurev.physchem.040808.090423
Google Scholar
[39]
Stupp JBaSI. 25th Anniversary Article: Supramolecular Materials for Regenerative Medicine. Adv Mater 2014; 26. 1642-1659.
DOI: 10.1002/adma.201304606
Google Scholar
[40]
Rocha L, Paius C-M, Luca-Raicu A, Resmerit E, Rusu A, Moleavin I-A, et al. Azobenzene based polymers as photoactive supports and micellarstructures for applications in biology. J Photochem Photobiol, A. 2014; 291: 16-25.
DOI: 10.1016/j.jphotochem.2014.06.018
Google Scholar
[41]
R. Barillé a RJ, S. Kucharskic, J. Eyerb, F. Letournel. Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: An in vitro study for neuron guidance. Colloids and Surfaces B: Biointerfaces. 2011; 88: 63-71.
DOI: 10.1016/j.colsurfb.2011.06.005
Google Scholar
[42]
Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. PMC Nanomedicine. 2010; 5. 469-484.
DOI: 10.2217/nnm.10.12
Google Scholar
[43]
Taolei Sun LF, Xuegeng Gao, Lei Jiang. Bioinspired Surfaces with Special Wettability. Acc Chem Res. 2005; 38: 644-652.
DOI: 10.1021/ar040224c
Google Scholar
[44]
Poole K, Khairy K, Friedrichs J, Franz C, Cisneros DA, Howard J, et al. Molecular-scale Topographic Cues Induce the Orientation and Directional Movement of Fibroblasts on Two-dimensional Collagen Surfaces. J Mol Biol. 2005; 349: 380-386.
DOI: 10.1016/j.jmb.2005.03.064
Google Scholar
[45]
Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS, et al. Engineering the cellematerial interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 2011; 32: 3700-3711.
DOI: 10.1016/j.biomaterials.2011.02.004
Google Scholar
[46]
Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. Roy Soc Ch Advances. 2013; 3: 11073–11094.
DOI: 10.1039/c3ra23315d
Google Scholar
[47]
Underhill GH, Galie P, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Bi. 2012; 28.
Google Scholar
[48]
Dirk Lehnert BW-H, Christian David, Ulrich Weiland, Christoph Ballestrem, Beat A. Imhof and Martin Bastmeyer. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci. 2004; 117: 41-52.
DOI: 10.1242/jcs.00836
Google Scholar
[49]
Faramarz Edalat IS, Sam Manoucheri and Ali Khademhosseini. Material strategies for creating artificial cell-instructive niches. Proc Natl Acad Sci. 2012; 94: 13: 661–663.
DOI: 10.1016/j.copbio.2012.05.007
Google Scholar
[50]
Kooten TGv, Spijker HT, Busscher HJ. Plasma-treated polystyrene surfaces: model surfaces for studying cell–biomaterial interactions. Biomaterials. 2003; 25: 1735-1747.
DOI: 10.1016/j.biomaterials.2003.08.071
Google Scholar
[51]
Braber ETd, Ruijter JEd, Ginsel LA, Recum AFv, Jansen JA. Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res. 1997; 40: 291–300.
DOI: 10.1002/(sici)1097-4636(199805)40:2<291::aid-jbm14>3.0.co;2-p
Google Scholar
[52]
Dalby MJ, Biggs MJP, Gadegaard N, Kalna G, Wilkinson CDW, Curtis ASG. Nanotopographical Stimulation of Mechanotransduction and Changes in Interphase Centromere Positioning. J Cell Cem. 2007; 100: 326–338.
DOI: 10.1002/jcb.21058
Google Scholar
[53]
Highly parallel fabrication of nanopatterned surfaces with nanoscale orthogonal biofunctionalization imprint lithography. Nano Tech. 18: 101–135.
DOI: 10.1088/0957-4484/18/13/135101
Google Scholar
[54]
Nuutinen T, Silvennoinen M, paivasaari K, Vahimaa P. Control of cultured human cells with femtosecond laser ablated patterns on steel and plastic surfaces. Biomed Microdevices. 2013; 15: 279–288.
DOI: 10.1007/s10544-012-9726-8
Google Scholar
[55]
Kshitiza, Park J, Kima P, Helen W, Engler AJ, Levchenko A, et al. Control of stem cell fate and function by engineering physical microenvironments. PMC Integr Biol. 2012; 4: 1008–1018.
DOI: 10.1039/c2ib20080e
Google Scholar
[56]
Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CDW, Curtis ASG. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res. 2003; 284: 274-282.
DOI: 10.1016/s0014-4827(02)00053-8
Google Scholar
[57]
S L, MB M, U M, L C, HP W. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir–Blodgett lithography. Bio Mater. 2005; 26: 563–5670.
DOI: 10.1016/j.biomaterials.2004.02.068
Google Scholar
[58]
Yima EKF, Pangb SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res. 2007; 313: 1820-1829.
DOI: 10.1016/j.yexcr.2007.02.031
Google Scholar
[59]
Rachel Hatano KM, Jesus Isaac Luna, Drew E Glaser, Valerie J Leppert, and Kara E McCloskey. Endothelial cells derived from embryonic stem cells respond to cues from topographical surface patterns. J Biochem Eng. 2013; 7: 18: 1-12.
DOI: 10.1186/1754-1611-7-18
Google Scholar
[60]
Baaca H, Leea J-H, Seoa J-M, Parka TH, Chunga H, Leed S-D, et al. Submicron-scale topographical control of cell growth using holographic surface relief grating. Mater Sci Eng. 2004; 24: 209-212.
Google Scholar
[61]
Lee JK, Baac H, Song S-H, Lee S-D, Park D. The Topographical Guidance of Neurons cultured on Holographic Photo-Responsive Polymer. IEEE EMBS Conf. 2004; 0-7803-8439-3/04: 4970-4973.
DOI: 10.1109/iembs.2004.1404374
Google Scholar
[61]
Hurduca N, Donoseb BC, Macoveic A, Paiusa C, Ibanescua C, Scutarua D, et al. Direct Observation of Athermal photofluidisation in Azo-Polymer Films. Soft Matter. 2012; 00: 1-3.
Google Scholar
[63]
Barille R, Janik R, Kucharskic S, Eyer J, Letournel F. Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: An in vitro study for neuron guidance. Colloids Surf, B. 2011; 88: 63-71.
DOI: 10.1016/j.colsurfb.2011.06.005
Google Scholar
[64]
Lee JK, Baac H, Song S-H, Lee S-D, Park D. The Topographical Guidance of Neurons cultured on Holographic Photo-Responsive Polymer. IEEE EMBS Conf. 2004; 0-7803-8439-3/04: 4970-4973.
DOI: 10.1109/iembs.2004.1404374
Google Scholar
[65]
Hurduca N, Donoseb BC, Macoveic A, Paiusa C, Ibanescua C, Scutarua D. Direct Observation of Athermal photofluidisation in Azo-Polymer Films. Soft Matter. 2012; 00: 1-3.
Google Scholar