Review on Photo-Responsive Polymeric Interfaces in Biomedical Applications

Article Preview

Abstract:

Photo-sensitive, smart switchable polymers are macromolecules that change its properties when irradiated with the light of the appropriate wavelength. Due to this uniqueness photo polymers has wide application. In this review we discuss the photopolymer chemistry and explain the changing the morphology of polymeric materials after exposing into light. Also we discussed photo-polymers applications in biomedical field.

You might also be interested in these eBooks

Info:

Pages:

44-54

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kumar S, Dory YL, Lepage M, Zhao Y. Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo-and ph sensitive release of dye molecules. Macromolecules. 2011; 44: 7385-7393.

DOI: 10.1021/ma2010102

Google Scholar

[2] Medeirosa SF, Santosa AM, Fessib H, Elaissari. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2010; 403: 139-1361.

Google Scholar

[3] Mendes PM. Stimuli-responsive surfaces for bio-applications. Chem Soc Rev. 2008; 37: 2512-2529.

Google Scholar

[4] Cole MA, Voelcker NH, Thissen H, Griesser HJ. Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials. 2009; 30: 1827–1850.

DOI: 10.1016/j.biomaterials.2008.12.026

Google Scholar

[5] Schnabel W. Polymers and Light: Wiley Inter Science; (2007).

Google Scholar

[6] Szymannski W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem Rev. 2012; 113: 6114−6178.

DOI: 10.1021/cr300179f

Google Scholar

[7] Liu Z, Tang Y, Li N, Lu L, Deng J, Cai Y. Modulating Light-Tunable Acid Sensitivity of a Bioinspired Polymer Simply by Adjusting the Position of a Single Methoxy Substituent. J Polym Sci Pol Chem. 2011; 50: 495-508.

DOI: 10.1002/pola.25057

Google Scholar

[8] Shi D, Matsusaki M, Akashi M. Photo-tunable protein release from biodegradable nanoparticles composed of cinnamic acid derivatives. J Control Release. 2011; 149: 182-189.

DOI: 10.1016/j.jconrel.2010.08.009

Google Scholar

[9] Trenor SR, Shultz AR, Love BJ, Long TE. Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds. Chem Rev. 2004; 104: 3059-3077.

DOI: 10.1021/cr030037c

Google Scholar

[10] Mahimwalla Z, Mamiya KGYJ-i, Shishido A, Priimagi A, Barrett CJ. Azobenzene photomechanics: prospects and potential applications. Polym Bull. 2012; 69: 967–1006.

DOI: 10.1007/s00289-012-0792-0

Google Scholar

[11] Kocher C, Wederb C, Smith P. Latent, ultraviolet light absorbers. J Mater Chem. 2003; 13: 9-15.

Google Scholar

[12] Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem. 2010; 1: 37-54.

DOI: 10.1039/b9py00300b

Google Scholar

[13] Orain D, Ellard J, Bradley M. Protecting Groups in Solid-Phase Organic Synthesis. J Comb Chem. 2002; 4: 1-16.

DOI: 10.1021/cc0001093

Google Scholar

[14] Frutos AG, Brockman JM, Corn RM. Reversible Protection and Reactive Patterning of Amine- and Hydroxyl-Terminated Self-Assembled Monolayers on Gold Surfaces for the Fabrication of Biopolymer Arrays. Langmuir. 2000; 16: 2192–2197.

DOI: 10.1021/la990718w

Google Scholar

[15] Katz JS, Burdick JA. Light-Responsive Biomaterials: Development and Applications. Macromol Biosci. 2009; 10: 339–348.

DOI: 10.1002/mabi.200900297

Google Scholar

[16] Lambeth RH, Moore JS. Light-Induced Shape Changes in Azobenzene Functionalized Polymers Prepared by Ring-Opening Metathesis Polymerization. Macromolecules. 2007; 40: 1838–1842.

DOI: 10.1021/ma062680h

Google Scholar

[17] Liu D, Xie Y, Shao H, Prof XJ. Using Azobenzene-Embedded Self-Assembled Monolayers To Photochemically Control Cell Adhesion Reversibly. Angew Chem Int Ed. 2009; 48: 4406-4408.

DOI: 10.1002/anie.200901130

Google Scholar

[18] Natansohn A, Rochon P. Photoinduced motions in azo-containing polymers. Chem Rev. 2002; 102: 4139-4176.

DOI: 10.1021/cr970155y

Google Scholar

[19] Beharrya AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011; 40: 4422-4437.

Google Scholar

[20] Prucker O, Rühe J. Polymer Layers through Self-Assembled Monolayers of Initiators. Langmuir. 1998; 14: 6893–6898.

DOI: 10.1021/la971035o

Google Scholar

[21] Russew M-M, Hecht S. Photoswitches: From Molecules to Materials. Adv Mater. 2010; 22: 3348–3360.

DOI: 10.1002/adma.200904102

Google Scholar

[22] Photoinduced Motions in Azo-Containing Polymers. Chem Rev. Almeria Natansohn and Paul Rochon; 102: 4139-4175.

DOI: 10.1021/cr970155y

Google Scholar

[23] Bian S, Liu W, Williams J, Samuelson L, Kumar J, Tripathy S. Photoinduced Surface Relief Grating on Amorphous Poly(4-phenylazophenol) Films. Chem Mater. 2000; 12: 1585-1590.

DOI: 10.1021/cm000071x

Google Scholar

[24] Mahimwalla Z, Yager KG, Mamiya J-i, Shishido A, Priimagi A, Barrett CJ. Azobenzene photomechanics: prospects and potential applications. Polym Bull. 2012; 69: 967–1006.

DOI: 10.1007/s00289-012-0792-0

Google Scholar

[25] Ikeda T, Ube T. Photomobile polymer materials: from nano to macro. Mater Today. 2011; 14: 480-487.

DOI: 10.1016/s1369-7021(11)70212-7

Google Scholar

[26] Ichimura K. Photoalignment of Liquid-Crystal Systems. Chem Rev. 2000; 100: 1847-1874.

DOI: 10.1021/cr980079e

Google Scholar

[27] Natansohn A, Rochon P. Photoinduced Motions in Azo-Containing Polymers. Chem Rev. 2002; 102: 4139-4175.

DOI: 10.1021/cr970155y

Google Scholar

[28] Beharrya AA, Woolley GA. Small molecules in biology themed issue. Chem Soc Rev. 2011; 40: 4422-4437.

Google Scholar

[29] Arri Priimagi AS. Azopolymer-Based Micro- and Nanopatterning for Photonic Applications. J Polym Sci Part A: Polym Chem. 2013; 52: 163–182.

DOI: 10.1002/polb.23390

Google Scholar

[30] Chiefari J, Chong YKB, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process. Macromolecules. 1998; 31: 5559–5562.

DOI: 10.1021/ma9804951

Google Scholar

[31] Zhao Y, Ikeada T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals (2009).

Google Scholar

[32] Schnabel W. Polymers and Light. Book Fundmental and Technical Applications. 2007: 5-400.

Google Scholar

[33] Liu Z, Tang Y, Li N, Lu L, Deng J, Cai Y. Modulating Light-Tunable Acid Sensitivity of a Bioinspired Polymer Simply by Adjusting the Position of a Single Methoxy Substituent. J Polym SciPart A: Polym Chem. 2011; 50: 495-508.

DOI: 10.1002/pola.25057

Google Scholar

[34] Andreas Krieg CP, Anja Baumgaertel, Martin D. Hager, C. Remzi Becer and Ulrich S. Schubert. Dual hydrophilic polymers based on (meth)acrylic acid and poly(ethylene glycol) – synthesis and water uptake behavior†. Poly Chem. 2010; 1: 1669-1676.

DOI: 10.1039/c0py00156b

Google Scholar

[35] Tasolei Sun LF, Xuefeng Gao, Lei Jiang. Bioinspired Surfaces with Special Wettability. Acc Chem Res. 205; 38: 644-652.

DOI: 10.1021/ar040224c

Google Scholar

[36] Palyvoda O, Bordenyuk AN, Yatawara AK, McCullen E, Chen C-C, Benderskii AV, et al. Molecular Organization in SAMs Used for Neuronal Cell Growth. Langmuir. 2008; 24: 4097-4106.

DOI: 10.1021/la7032675

Google Scholar

[37] Mu L, Liu Y, Cai S, Kong J. A Smart Surface in a Microfluidic Chip for Controlled Protein Separation Chem Eur J. 2007; 13: 113-120.

DOI: 10.1002/chem.200601624

Google Scholar

[38] Feringa Wrabl. Light Switching of Molecules on Surfaces. Annu Rev Phys Chem. 2009; 60: 407–428.

DOI: 10.1146/annurev.physchem.040808.090423

Google Scholar

[39] Stupp JBaSI. 25th Anniversary Article: Supramolecular Materials for Regenerative Medicine. Adv Mater 2014; 26. 1642-1659.

DOI: 10.1002/adma.201304606

Google Scholar

[40] Rocha L, Paius C-M, Luca-Raicu A, Resmerit E, Rusu A, Moleavin I-A, et al. Azobenzene based polymers as photoactive supports and micellarstructures for applications in biology. J Photochem Photobiol, A. 2014; 291: 16-25.

DOI: 10.1016/j.jphotochem.2014.06.018

Google Scholar

[41] R. Barillé a RJ, S. Kucharskic, J. Eyerb, F. Letournel. Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: An in vitro study for neuron guidance. Colloids and Surfaces B: Biointerfaces. 2011; 88: 63-71.

DOI: 10.1016/j.colsurfb.2011.06.005

Google Scholar

[42] Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. PMC Nanomedicine. 2010; 5. 469-484.

DOI: 10.2217/nnm.10.12

Google Scholar

[43] Taolei Sun LF, Xuegeng Gao, Lei Jiang. Bioinspired Surfaces with Special Wettability. Acc Chem Res. 2005; 38: 644-652.

DOI: 10.1021/ar040224c

Google Scholar

[44] Poole K, Khairy K, Friedrichs J, Franz C, Cisneros DA, Howard J, et al. Molecular-scale Topographic Cues Induce the Orientation and Directional Movement of Fibroblasts on Two-dimensional Collagen Surfaces. J Mol Biol. 2005; 349: 380-386.

DOI: 10.1016/j.jmb.2005.03.064

Google Scholar

[45] Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS, et al. Engineering the cellematerial interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 2011; 32: 3700-3711.

DOI: 10.1016/j.biomaterials.2011.02.004

Google Scholar

[46] Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. Roy Soc Ch Advances. 2013; 3: 11073–11094.

DOI: 10.1039/c3ra23315d

Google Scholar

[47] Underhill GH, Galie P, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Bi. 2012; 28.

Google Scholar

[48] Dirk Lehnert BW-H, Christian David, Ulrich Weiland, Christoph Ballestrem, Beat A. Imhof and Martin Bastmeyer. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci. 2004; 117: 41-52.

DOI: 10.1242/jcs.00836

Google Scholar

[49] Faramarz Edalat IS, Sam Manoucheri and Ali Khademhosseini. Material strategies for creating artificial cell-instructive niches. Proc Natl Acad Sci. 2012; 94: 13: 661–663.

DOI: 10.1016/j.copbio.2012.05.007

Google Scholar

[50] Kooten TGv, Spijker HT, Busscher HJ. Plasma-treated polystyrene surfaces: model surfaces for studying cell–biomaterial interactions. Biomaterials. 2003; 25: 1735-1747.

DOI: 10.1016/j.biomaterials.2003.08.071

Google Scholar

[51] Braber ETd, Ruijter JEd, Ginsel LA, Recum AFv, Jansen JA. Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res. 1997; 40: 291–300.

DOI: 10.1002/(sici)1097-4636(199805)40:2<291::aid-jbm14>3.0.co;2-p

Google Scholar

[52] Dalby MJ, Biggs MJP, Gadegaard N, Kalna G, Wilkinson CDW, Curtis ASG. Nanotopographical Stimulation of Mechanotransduction and Changes in Interphase Centromere Positioning. J Cell Cem. 2007; 100: 326–338.

DOI: 10.1002/jcb.21058

Google Scholar

[53] Highly parallel fabrication of nanopatterned surfaces with nanoscale orthogonal biofunctionalization imprint lithography. Nano Tech. 18: 101–135.

DOI: 10.1088/0957-4484/18/13/135101

Google Scholar

[54] Nuutinen T, Silvennoinen M, paivasaari K, Vahimaa P. Control of cultured human cells with femtosecond laser ablated patterns on steel and plastic surfaces. Biomed Microdevices. 2013; 15: 279–288.

DOI: 10.1007/s10544-012-9726-8

Google Scholar

[55] Kshitiza, Park J, Kima P, Helen W, Engler AJ, Levchenko A, et al. Control of stem cell fate and function by engineering physical microenvironments. PMC Integr Biol. 2012; 4: 1008–1018.

DOI: 10.1039/c2ib20080e

Google Scholar

[56] Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CDW, Curtis ASG. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res. 2003; 284: 274-282.

DOI: 10.1016/s0014-4827(02)00053-8

Google Scholar

[57] S L, MB M, U M, L C, HP W. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir–Blodgett lithography. Bio Mater. 2005; 26: 563–5670.

DOI: 10.1016/j.biomaterials.2004.02.068

Google Scholar

[58] Yima EKF, Pangb SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res. 2007; 313: 1820-1829.

DOI: 10.1016/j.yexcr.2007.02.031

Google Scholar

[59] Rachel Hatano KM, Jesus Isaac Luna, Drew E Glaser, Valerie J Leppert, and Kara E McCloskey. Endothelial cells derived from embryonic stem cells respond to cues from topographical surface patterns. J Biochem Eng. 2013; 7: 18: 1-12.

DOI: 10.1186/1754-1611-7-18

Google Scholar

[60] Baaca H, Leea J-H, Seoa J-M, Parka TH, Chunga H, Leed S-D, et al. Submicron-scale topographical control of cell growth using holographic surface relief grating. Mater Sci Eng. 2004; 24: 209-212.

Google Scholar

[61] Lee JK, Baac H, Song S-H, Lee S-D, Park D. The Topographical Guidance of Neurons cultured on Holographic Photo-Responsive Polymer. IEEE EMBS Conf. 2004; 0-7803-8439-3/04: 4970-4973.

DOI: 10.1109/iembs.2004.1404374

Google Scholar

[61] Hurduca N, Donoseb BC, Macoveic A, Paiusa C, Ibanescua C, Scutarua D, et al. Direct Observation of Athermal photofluidisation in Azo-Polymer Films. Soft Matter. 2012; 00: 1-3.

Google Scholar

[63] Barille R, Janik R, Kucharskic S, Eyer J, Letournel F. Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: An in vitro study for neuron guidance. Colloids Surf, B. 2011; 88: 63-71.

DOI: 10.1016/j.colsurfb.2011.06.005

Google Scholar

[64] Lee JK, Baac H, Song S-H, Lee S-D, Park D. The Topographical Guidance of Neurons cultured on Holographic Photo-Responsive Polymer. IEEE EMBS Conf. 2004; 0-7803-8439-3/04: 4970-4973.

DOI: 10.1109/iembs.2004.1404374

Google Scholar

[65] Hurduca N, Donoseb BC, Macoveic A, Paiusa C, Ibanescua C, Scutarua D. Direct Observation of Athermal photofluidisation in Azo-Polymer Films. Soft Matter. 2012; 00: 1-3.

Google Scholar