[1]
X. Jin, and S. K. Agrawal, Exploring Laparoscopic Surgery Training with Cable-Driven ARm Exoskeleton (CAREX-M), in IEEE International Conference on Rehabilitation Robotics (ICORR). 2015: Singapore.
DOI: 10.1109/icorr.2015.7281247
Google Scholar
[2]
B. Misgeld, T. Schauer, O. Simanski, M. Hessinger, R. Müller, R. Werthschützky, and P.P. Pott, Tool Position Control of an Upper Limb Exoskeleton for Robot-Assisted Surgery. IFAC-PapersOnLine 2015. 48: p.195–200.
DOI: 10.1016/j.ifacol.2015.10.138
Google Scholar
[3]
S. K. Banala, S. K. Agrawal, and J. P. Scholz, Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients, in IEEE 10th International Conference on Rehabilitation Robotics (ICORR 2007). 2007: Noordwijk, The Netherlands.
DOI: 10.1109/icorr.2007.4428456
Google Scholar
[4]
A. Crema, M. Mancuso, A. Frisoli, F. Salsedo, F. Raschella, and S. Micera, A Hybrid NMES-Exoskeleton for Real Objects Interaction, in 7th International IEEE/EMBS Conference on Neural Engineering (NER). 2015: Montpellier, France.
DOI: 10.1109/ner.2015.7146710
Google Scholar
[5]
H. Kim, L. M. Miller, I. Fedulow, M. Simkins, G. M. Abrams, N. Byl, and J. Rosen, Kinematic Data Analysis for Post-Stroke Patients Following Bilateral versus Unilateral Rehabilitation with an Upper Limb Wearable Robotic System. IEEE Trans. Neural Syst. Rehabil. Eng, 2013. 21: p.153–164.
DOI: 10.1109/tnsre.2012.2207462
Google Scholar
[6]
H. Cao, Z. Ling, J. Zhu, Y. Wang, and W. Wang, Design Frame of a Leg Exoskeleton for Load-Carrying Augmentation, in IEEE International Conference on Robotics and Biomimetics (ROBIO). 2009: Guilin, China.
DOI: 10.1109/robio.2009.5420684
Google Scholar
[7]
B. S. Rupal, S. Rafique, A. Singla, E. Singla, M. Isaksson, and G. S. Virk, Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. International Journal of Advanced Robotic Systems, 2017. November-December 2017: pp.1-27.
DOI: 10.1177/1729881417743554
Google Scholar
[8]
H. Lee, J. Kim, and T. Kim, A Robot Teaching Framework for a Redundant Dual Arm Manipulator with Teleoperation from Exoskeleton Motion Data, in IEEE-RAS International Conference on Humanoid Robots. 2014: Madrid, Spain.
DOI: 10.1109/humanoids.2014.7041495
Google Scholar
[9]
G. Schultz, and K. Mombaur, Modeling and Optimal Control of Human-Like Running. IEEE/ASME Trans. Mechatron, 2010. 15(5): p.783–792.
DOI: 10.1109/tmech.2009.2035112
Google Scholar
[10]
K. B. Bellenfant, G. L. Robbins, R. R. Rogers, T. J. Kopec, and C. G. Ballmann, Effects of Dominant and Nondominant Limb Immobilization on Muscle Activation and Physical Demand during Ambulation with Axillary Crutches. J Funct Morphol Kinesiol. 2021; 6(16): pp.1-12.
DOI: 10.3390/jfmk6010016
Google Scholar
[11]
B. Zhang, S. Li, and Y. Zhang, Evaluation of Dynamic Posture Control when Wearing High-Heeled Shoes Using Star Ecursion Balance Test, Physical Activity and Health, 2017. 1(1): pp.1-7.
DOI: 10.5334/paah.1
Google Scholar
[12]
W. Tsang, K. Singh, and E. Fiume, Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion, in ACM SIGGRAPH/Eurographics symposium on Computer animation. 2005. pp.319-328.
DOI: 10.1145/1073368.1073414
Google Scholar
[13]
I. Albrecht, J. Haber, and H. Seidel, Construction and animation of anatomically based human hand models, in ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA'03). 2003. pp.98-109.
Google Scholar
[14]
F. Dong, G. J. Clapworthy, and M. A. Krokos, J. Yao, An Anatomy Based Approach to Hum a Muscle Modeling and Deformation. IEEE Transaction Visualization and Computer Graphics, 2002. 8(2): pp.154-170.
DOI: 10.1109/2945.998668
Google Scholar
[15]
C. Antfolk, M. D'Alonzo, B. Rosén, G. Lundborg, F. Sebelius, and C. Cipriani, Sensory Feedback in Upper Limb Prosthetics. Expert Review of Medical Devices, 2013. 10(1): pp.45-54.
DOI: 10.1586/erd.12.68
Google Scholar
[16]
F. C. Anderson, and M. G. Pandy, Dynamic Optimization of Human Walking. ASME J. Biomech. Eng., 2001. 123(5): p.381–390.
Google Scholar
[17]
R. D. Crowninshield, and R. Brand, A Physiologically Based Criterion of Muscle Force Prediction in Locomotion. J. Biomech., 1981. 14(11): p.793–801.
DOI: 10.1016/0021-9290(81)90035-x
Google Scholar
[18]
D. Farina, and O. Aszmann, Bionic limbs: clinical reality and academic promises. Sci. Transl. Med, (2014).
DOI: 10.1126/scitranslmed.3010453
Google Scholar
[19]
S. Safavi, and A. S. Ghafari, A. Meghdari, Design of an Optimum Torque Actuator for Augmenting Lower Extremity Exoskeletons in Biomechanical Framework, in IEEE International Conference on Robotics and Biomimetics (ROBIO). 2011: Karon Beach, Phuket, Thailand.
DOI: 10.1109/robio.2011.6181581
Google Scholar
[20]
P. Surachai, Design and simulation of leg-exoskeleton suit for rehabilitation. Glob. J. Med. Res, 2012. 12: pp.1-8.
Google Scholar
[21]
E. K. Chadwick, D. Blana, A. J. van den Bogert, and R. F. Kirsch, A Real-Time, 3-D Musculoskeletal Model for Dynamic Simulation of Arm Movement. Biomedical Engineering IEEE Transactions, 2009. 56(4): pp.941-948.
DOI: 10.1109/tbme.2008.2005946
Google Scholar
[22]
F. Ferrati, R. Bortoletto, and E. Pagello, Virtual Modelling of a Real Exoskeleton Constrained to a Human Musculoskeletal Model, in Second International Conference Biomimetic and Biohybrid Systems, Living Machines 2013, Springer: London, UK.
DOI: 10.1007/978-3-642-39802-5_9
Google Scholar
[23]
M. Pan, D. Zhang, and Z. Gao, Novel Design of a Three Degrees of Freedom Hip Exoskeleton Based on Biomimetic Parallel Structure, in IEEE International Conference on Computer Science and Automation Engineering (CSAE). 2011: Shanghai, China.
DOI: 10.1109/csae.2011.5953292
Google Scholar
[24]
A. Singla, S. Dhand, and G. S. Virk, Mathematical modelling of a hand crank generator for powering lower-limb exoskeletons. Pespect. Sci., 2016. 8: p.561–563.
DOI: 10.1016/j.pisc.2016.06.020
Google Scholar
[25]
R. Lu, Z. Li, and C-Y. Su, Development and Learning Control of a Human limb with a Rehabilitation Exoskeleton. IEEE Trans. Ind. Electron, 2014. 61: p.3776–3785.
DOI: 10.1109/tie.2013.2275903
Google Scholar
[26]
C. C. Velandia, D. A. Tibaduiza, and M. A. Vejar, Proposal of Novel Model for a 2 DOF Exoskeleton for Lower-Limb Rehabilitation. Robotic, MDPI, 2017. 6(20): pp.1-25.
DOI: 10.3390/robotics6030020
Google Scholar
[27]
J. K. Zhou, Differential Transform Method and Its Applications for Electrical Circuits. Huazhong University Press, Wuhan, China, (1986).
Google Scholar
[28]
M. M. Rashidi, O. A. Bég, and N. Rahimzadeh, A Generalized Differential Transform Method For Combined Free And Forced Convection Flow About Inclined Surfaces In Porous Media. Chemical Engineering Communications, 2012. 199(2): pp.257-282.
DOI: 10.1080/00986445.2011.586757
Google Scholar
[29]
A. Aziz, M. Torabi, and K. Zhang, Convective–radiative radial fins with convective base heating and convective–radiative tip cooling: Homogeneous and functionally graded materials. Energy Conversion and Management 2013. 74: pp.366-376.
DOI: 10.1016/j.enconman.2013.05.034
Google Scholar
[30]
Kuo, B., Application of the differential transformation method to the solutions of the free convection problem. Applied Mathematics and Computation 2005. 165(1): pp.63-79.
DOI: 10.1016/j.amc.2004.04.090
Google Scholar
[31]
M. Ghafarian, and A. Ariaei, Free vibration analysis of a system of elastically interconnected rotating tapered Timoshenko beams using differential transform method. International Journal of Mechanical Sciences, 2016. 107: pp.93-109.
DOI: 10.1016/j.ijmecsci.2015.12.027
Google Scholar
[32]
S. Ghafoori, M. Motevalli, M. G. Nejad, F. Shakeri, D. D. Ganji, and M. Jalaal, Efficiency of differential transformation method for nonlinear oscillation: Comparison with HPM and VIM. Current Applied Physics 2011. 11(4): pp.965-971.
DOI: 10.1016/j.cap.2010.12.018
Google Scholar
[33]
O. Adeleye, O. Abdulkareem, A. Yinusa, and G. Sobamowo, Analytical Investigations of Temperature Effects on Creep Strain Relaxation of Biomaterials Using Homotopy Perturbation and Differential Transform Methods. Journal of Computational and Applied Mechanics, 2019. 14(1-2): pp.5-23.
DOI: 10.32973/jcam.2019.001
Google Scholar
[34]
S. Nourazar, and A. Mirzabeigy, Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method. Scientia Iranica B 2013. 20(2): p.364–368.
Google Scholar
[35]
V. S. Erturk, Z.M. Odibat, and S. Momani, The Multi-Step Differential Transform Method And Its Application To Determine The Solutions Of Non-Linear Oscillators. Advances in Applied Mathematics and Mechanics, 2012. 4(4): pp.422-438.
DOI: 10.4208/aamm.10-m1138
Google Scholar
[36]
E. P. Hanavan, A mathematical model of the human body. AMRL TR 1964: p.1–149.
Google Scholar
[37]
R. Drillis, and C. Contini, Body Segment Parameters Artificial Limbs. National Academy of Sciences Washington, DC, 1964. 8: pp.44-67.
Google Scholar