Biomaterial Properties of Femur Implant on Acetabulum Erosion: A Review

Article Preview

Abstract:

The hip is one in every of the various joint at intervals the body. The correct operating of this joint is essential. For the aim once the hip is injured whole, a substitution procedure of the entire joint ought to be done to reinstate its operating, that is known as absolute hip surgical process. It is finished with the assistance of inserts of various biomaterials, as an example, polymers, metals, and pottery. The primary issues with regard to the utilization of various biomaterials are the reaction of the body's instrument to wear trash. Throughout this audit, biomaterials that are developing is talked regarding aboard the wear and tear and tear conduct and instrument. To boot, the numerous properties of the biomaterials are talked regarding aboard the expected preferences and drawbacks of their utilization. Further, the blends of various biomaterials at intervals the articulating surfaces are cleft and so the problems regarding their utilization are assessed. This paper hopes to passes away an in depth review of the trauma fringe of bearing surfaces of hip prosthetic devices. Additionally, this paper can offer AN ordered blueprint of the materials nearby their favorable circumstances and detriments and besides the conceivable outcomes of use. Keywords: - Hip implant; Biomaterials; Wear mechanism; Bearing surfaces; Polymers

You might also be interested in these eBooks

Info:

Pages:

39-62

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Learmonth, C. Young, and C. Rorabeck, The operation of the century: Total hip replacement,, Lancet, vol. 370, p.1508–19, Nov. 2007,.

DOI: 10.1016/s0140-6736(07)60457-7

Google Scholar

[2] S. Knight, R. Aujla, and S. Biswas, Total Hip Arthroplasty—Over 100 years of operative history,, Orthopedic reviews, vol. 3, p. e16, Sep. 2011,.

Google Scholar

[3] J. J. Callaghan, J. C. Albright, D. D. Goetz, J. P. Olejniczak, and R. C. Johnston, Charnley total hip arthroplasty with cement. Minimum twenty-five-year follow-up,, J Bone Joint Surg Am, vol. 82, no. 4, p.487–497, Apr. 2000,.

DOI: 10.2106/00004623-200004000-00004

Google Scholar

[4] M. N. Smith-Petersen, Evolution of mould arthroplasty of the hip joint,, J Bone Joint Surg Br, vol. 30B, no. 1, p.59–75, Feb. (1948).

DOI: 10.1302/0301-620x.30b1.59

Google Scholar

[5] S. R. Brown, W. A. Davies, D. H. DeHeer, and A. B. Swanson, Long-term survival of McKee-Farrar total hip prostheses,, Clin Orthop Relat Res, no. 402, p.157–163, Sep. 2002,.

DOI: 10.1097/00003086-200209000-00013

Google Scholar

[6] P. Bizot, R. Nizard, M. Hamadouche, D. Hannouche, and L. Sedel, Prevention of wear and osteolysis: alumina-on-alumina bearing,, Clin Orthop Relat Res, no. 393, p.85–93, Dec. 2001,.

DOI: 10.1097/00003086-200112000-00010

Google Scholar

[7] M. Merola and S. Affatato, Materials for Hip Prostheses: A Review of Wear and Loading Considerations,, Materials (Basel), vol. 12, no. 3, Feb. 2019,.

DOI: 10.3390/ma12030495

Google Scholar

[8] S. Affatato, K. Colic, I. Hut, D. Mirjanić, S. Pelemiš, and A. Mitrovic, Short History of Biomaterials Used in Hip Arthroplasty and Their Modern Evolution,, in Biomaterials in Clinical Practice  : Advances in Clinical Research and Medical Devices, F. Zivic, S. Affatato, M. Trajanovic, M. Schnabelrauch, N. Grujovic, and K. L. Choy, Eds. Cham: Springer International Publishing, 2018, p.1–21.

DOI: 10.1007/978-3-319-68025-5_1

Google Scholar

[9] G. K. McKee, Total hip replacement — past, present and future,, Biomaterials, vol. 3, no. 3, p.130–135, Jul. 1982,.

DOI: 10.1016/0142-9612(82)90001-1

Google Scholar

[10] A. Aherwar, A. Singh, and A. Patnaik, Current and future biocompatibility aspects of biomaterials for hip prosthesis,, AIMS Journal, vol. 3, p.23–43, Jan. 2016,.

DOI: 10.3934/bioeng.2016.1.23

Google Scholar

[11] Perspectives in Total Hip Arthroplasty | ScienceDirect., https://www.sciencedirect.com/book/9781782420316/perspectives-in-total-hip-arthroplasty (accessed Jan. 23, 2021).

DOI: 10.1016/c2013-0-16438-0

Google Scholar

[12] S. Affatato, M. Spinelli, S. Squarzoni, F. Traina, and A. Toni, Mixing and matching in ceramic-on-metal hip arthroplasty: An in-vitro hip simulator study,, Journal of biomechanics, vol. 42, p.2439–46, Sep. 2009,.

DOI: 10.1016/j.jbiomech.2009.07.031

Google Scholar

[13] C. Y. Hu and T.-R. Yoon, Recent updates for biomaterials used in total hip arthroplasty,, Biomaterials Research, vol. 22, no. 1, p.33, Dec. 2018,.

DOI: 10.1186/s40824-018-0144-8

Google Scholar

[14] N. Kumar, N. C. Arora, and B. Datta, Bearing surfaces in hip replacement – Evolution and likely future,, Medical Journal Armed Forces India, vol. 70, no. 4, p.371–376, Oct. 2014,.

DOI: 10.1016/j.mjafi.2014.04.015

Google Scholar

[15] T. R. Green, J. Fisher, M. Stone, B. M. Wroblewski, and E. Ingham, Polyethylene particles of a 'critical size' are necessary for the induction of cytokines by macrophages in vitro,, Biomaterials, vol. 19, no. 24, p.2297–2302, Dec. 1998,.

DOI: 10.1016/s0142-9612(98)00140-9

Google Scholar

[16] L. M. Jazrawi, F. J. Kummer, and P. E. DiCesare, Alternative Bearing Surfaces for Total Joint Arthroplasty,, JAAOS - Journal of the American Academy of Orthopaedic Surgeons, vol. 6, no. 4, p.198–203, Aug. (1998).

DOI: 10.5435/00124635-199807000-00001

Google Scholar

[17] T. P. Schmalzried, P. C. Peters, B. T. Maurer, C. R. Bragdon, and W. H. Harris, Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces,, The Journal of Arthroplasty, vol. 11, no. 3, p.322–331, Apr. 1996,.

DOI: 10.1016/s0883-5403(96)80085-4

Google Scholar

[18] G. Digas, J. Kärrholm, J. Thanner, and P. Herberts, 5-year experience of highly cross-linked polyethylene in cemented and uncemented sockets: Two randomized studies using radiostereometric analysis,, Acta Orthopaedica, vol. 78, no. 6, p.746–754, Jan. 2007,.

DOI: 10.1080/17453670710014518

Google Scholar

[19] H. Maradit Kremers et al., Prevalence of Total Hip and Knee Replacement in the United States,, J Bone Joint Surg Am, vol. 97, no. 17, p.1386–1397, Sep. 2015,.

DOI: 10.2106/jbjs.n.01141

Google Scholar

[20] S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,, J Bone Joint Surg Am, vol. 89, no. 4, p.780–785, Apr. 2007,.

DOI: 10.2106/jbjs.f.00222

Google Scholar

[21] K. Miura, N. Yamada, S. Hanada, T.-K. Jung, and E. Itoi, The bone tissue compatibility of a new Ti–Nb–Sn alloy with a low Young's modulus,, Acta Biomaterialia, vol. 7, no. 5, p.2320–2326, May 2011,.

DOI: 10.1016/j.actbio.2011.02.008

Google Scholar

[22] S. Guo, Z. Bao, Q. Meng, L. Hu, and X. Zhao, A Novel Metastable Ti-25Nb-2Mo-4Sn Alloy with High Strength and Low Young's Modulus,, Metall Mater Trans A, vol. 43, no. 10, p.3447–3451, Oct. 2012,.

DOI: 10.1007/s11661-012-1324-0

Google Scholar

[23] G. K. McKee and J. Watson-Farrar, Replacement of arthritic hips by the McKee-Farrar prosthesis,, J Bone Joint Surg Br, vol. 48, no. 2, p.245–259, May (1966).

DOI: 10.1302/0301-620x.48b2.245

Google Scholar

[24] P. Boutin, Total arthroplasty of the hip by fritted alumina prosthesis. Experimental study and 1st clinical applications,, Orthopaedics & Traumatology: Surgery & Research, vol. 100, no. 1, p.15–21, Feb. 2014,.

DOI: 10.1016/j.otsr.2013.12.004

Google Scholar

[25] R. P. Welsh, R. M. Pilliar, and I. Macnab, Surgical Implants: THE ROLE OF SURFACE POROSITY IN FIXATION TO BONE AND ACRYLIC,, JBJS, vol. 53, no. 5, p.963–977, Jul. (1971).

DOI: 10.2106/00004623-197153050-00011

Google Scholar

[26] C. Pragathiswaran, G. Thulasi, M. M. Al-Ansari, L. A. Al-Humaid, and M. Saravanan, Experimental Investigation and Electrochemical characterization of Titanium Coated Nanocomposite materials for Biomedical Applications,, Journal of Molecular Structure, p.129932, Jan. 2021,.

DOI: 10.1016/j.molstruc.2021.129932

Google Scholar

[27] G. Willmann, Ceramics for total hip replacement--what a surgeon should know,, Orthopedics, vol. 21, no. 2, p.173–177, Feb. (1998).

DOI: 10.3928/0147-7447-19980201-11

Google Scholar

[28] P. Griss and G. Heimke, Five years experience with ceramic-metal-composite hip endoprostheses. I. clinical evaluation,, Arch Orthop Trauma Surg, vol. 98, no. 3, p.157–164, 1981,.

DOI: 10.1007/bf00632972

Google Scholar

[29] M. Hamadouche and L. Sedel, CERAMICS IN ORTHOPAEDICS,, The Journal of Bone and Joint Surgery. British volume, vol. 82-B, p.1095–1099, Nov. 2000,.

DOI: 10.1302/0301-620x.82b8.0821095

Google Scholar

[30] K. Shimizu et al., Time-dependent changes in the mechanical properties of zirconia ceramic,, Journal of Biomedical Materials Research, vol. 27, no. 6, p.729–734, 1993, doi: https://doi.org/10.1002/jbm.820270605.

Google Scholar

[31] I. T. Pulliam and R. T. Trousdale, Fracture of a ceramic femoral head after a revision operation. A case report,, J Bone Joint Surg Am, vol. 79, no. 1, p.118–121, Jan. 1997,.

DOI: 10.2106/00004623-199701000-00013

Google Scholar

[32] B. Cales, Zirconia as a sliding material: histologic, laboratory, and clinical data,, Clin Orthop Relat Res, no. 379, p.94–112, Oct. (2000).

DOI: 10.1097/00003086-200010000-00013

Google Scholar

[33] J. J. Yoo, Y.-M. Kim, K. S. Yoon, K.-H. Koo, W. S. Song, and H. J. Kim, Alumina-on-alumina total hip arthroplasty. A five-year minimum follow-up study,, J Bone Joint Surg Am, vol. 87, no. 3, p.530–535, Mar. 2005,.

DOI: 10.2106/jbjs.d.01753

Google Scholar

[34] E. Masson, Arthroplastie totale de la hanche par prothèse en alumine frittée. Étude expérimentale et premières applications cliniques,, EM-Consulte. https://www.em-consulte.com/article/869966/article/arthroplastie-totale-de-la-hanche-par-prothese-en- (accessed Jan. 28, 2021).

DOI: 10.1016/j.rcot.2013.12.006

Google Scholar

[35] I. C. Clarke, Role of ceramic implants. Design and clinical success with total hip prosthetic ceramic-to-ceramic bearings,, Clin Orthop Relat Res, no. 282, p.19–30, Sep. (1992).

DOI: 10.1097/00003086-199209000-00004

Google Scholar

[36] P. Bizot, R. Nizard, S. Lerouge, F. Prudhommeaux, and L. Sedel, Ceramic/ceramic total hip arthroplasty,, J Orthop Sci, vol. 5, no. 6, p.622–627, 2000,.

DOI: 10.1007/s007760070017

Google Scholar

[37] D. Hannouche, M. Hamadouche, R. Nizard, P. Bizot, A. Meunier, and L. Sedel, Ceramics in Total Hip Replacement,, Clinical Orthopaedics and Related Research®, vol. 430, p.62–71, Jan. 2005,.

DOI: 10.1097/01.blo.0000149996.91974.83

Google Scholar

[38] J. A. Davidson, Characteristics of Metal and Ceramic Total Hip Bearing Surfaces and Their Effect on Long-Term Ultra High Molecular Weight Polyethylene Wear,, Clinical Orthopaedics and Related Research®, vol. 294, p.361–378, Sep. (1993).

DOI: 10.1097/00003086-199309000-00053

Google Scholar

[39] P. Kumar et al., Low wear rate of UHMWPE against zirconia ceramic (Y-PSZ) in comparison to alumina ceramic and SUS 316L alloy,, J Biomed Mater Res, vol. 25, no. 7, p.813–828, Jul. 1991,.

DOI: 10.1002/jbm.820250703

Google Scholar

[40] M. Saito, S. Saito, K. Ohzono, K. Takaoka, and K. Ono, Efficacy of alumina ceramic heads for cemented total hip arthroplasty,, Clin Orthop Relat Res, no. 283, p.171–177, Oct. (1992).

DOI: 10.1097/00003086-199210000-00024

Google Scholar

[41] H. M. Schüller and R. K. Marti, Ten-year socket wear in 66 hip arthroplasties. Ceramic versus metal heads,, Acta Orthop Scand, vol. 61, no. 3, p.240–243, Jun. 1990,.

DOI: 10.3109/17453679008993508

Google Scholar

[42] B. Derbyshire, J. Fisher, D. Dowson, C. Hardaker, and K. Brummitt, Comparative study of the wear of UHMWPE with zirconia ceramic and stainless steel femoral heads in artificial hip joints,, Med Eng Phys, vol. 16, no. 3, p.229–236, May 1994,.

DOI: 10.1016/1350-4533(94)90042-6

Google Scholar

[43] A. Burckhardt and C. Berberat, How safe are ceramic heads as hip endoprostheses? A series of three head fractures within 3 months,, Arch Orthop Trauma Surg, vol. 112, no. 5, p.215–219, 1993,.

DOI: 10.1007/bf00451877

Google Scholar

[44] B. K. Vaughn, T. B. Dameron, T. W. Bauer, Y. Mochida, T. Akisue, and R. W. Eberle, Early osteolysis following total hip arthroplasty with use of a Hylamer liner in combination with a modular ceramic femoral head. A case report,, J Bone Joint Surg Am, vol. 81, no. 10, p.1446–1449, Oct. 1999,.

DOI: 10.2106/00004623-199910000-00009

Google Scholar

[45] M. J. Chmell, R. Poss, W. H. Thomas, and C. B. Sledge, Early failure of Hylamer acetabular inserts due to eccentric wear,, J Arthroplasty, vol. 11, no. 3, p.351–353, Apr. 1996,.

DOI: 10.1016/s0883-5403(96)80093-3

Google Scholar

[46] B. J. Livingston, M. J. Chmell, M. Spector, and R. Poss, Complications of total hip arthroplasty associated with the use of an acetabular component with a Hylamer liner,, J Bone Joint Surg Am, vol. 79, no. 10, p.1529–1538, Oct. 1997,.

DOI: 10.2106/00004623-199710000-00010

Google Scholar

[47] P. Z. Wirganowicz and B. J. Thomas, Massive osteolysis after ceramic on ceramic total hip arthroplasty. A case report,, Clin Orthop Relat Res, no. 338, p.100–104, May 1997,.

DOI: 10.1097/00003086-199705000-00015

Google Scholar

[48] P. Bizot, M. Larrouy, J. Witvoet, L. Sedel, and R. Nizard, Press-fit metal-backed alumina sockets: a minimum 5-year followup study,, Clin Orthop Relat Res, no. 379, p.134–142, Oct. 2000,.

DOI: 10.1097/00003086-200010000-00016

Google Scholar

[49] F. J. Kummer, S. A. Stuchin, and V. H. Frankel, Analysis of removed autophor ceramic-on-ceramic components,, The Journal of Arthroplasty, vol. 5, no. 1, p.29–33, Mar. 1990,.

DOI: 10.1016/s0883-5403(06)80006-9

Google Scholar

[50] T. R. Yoon, S. M. Rowe, S. T. Jung, K. J. Seon, and W. J. Maloney, Osteolysis in association with a total hip arthroplasty with ceramic bearing surfaces,, J Bone Joint Surg Am, vol. 80, no. 10, p.1459–1468, Oct. 1998,.

DOI: 10.2106/00004623-199810000-00007

Google Scholar

[51] H. C. Amstutz, P. Campbell, N. Kossovsky, and I. C. Clarke, Mechanism and clinical significance of wear debris-induced osteolysis,, Clin Orthop Relat Res, no. 276, p.7–18, Mar. (1992).

DOI: 10.1097/00003086-199203000-00003

Google Scholar

[52] P. Bizot and L. Sedel, Alumina bearings in hip replacement: Theoretical and practical aspects,, Operative Techniques in Orthopaedics, vol. 11, no. 4, p.263–269, Oct. 2001,.

DOI: 10.1016/s1048-6666(01)80040-9

Google Scholar

[53] J. Chiba, H. E. Rubash, K. J. Kim, and Y. Iwaki, The characterization of cytokines in the interface tissue obtained from failed cementless total hip arthroplasty with and without femoral osteolysis,, Clin Orthop Relat Res, no. 300, p.304–312, Mar. (1994).

DOI: 10.1097/00003086-199403000-00043

Google Scholar

[54] S. R. Goldring, A. L. Schiller, M. Roelke, C. M. Rourke, D. A. O'Neil, and W. H. Harris, The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis,, J Bone Joint Surg Am, vol. 65, no. 5, p.575–584, Jun. (1983).

DOI: 10.2106/00004623-198365050-00001

Google Scholar

[55] W. H. Harris, The problem is osteolysis,, Clin Orthop Relat Res, no. 311, p.46–53, Feb. (1995).

Google Scholar

[56] W. J. Maloney and R. L. Smith, Periprosthetic osteolysis in total hip arthroplasty: the role of particulate wear debris,, Instr Course Lect, vol. 45, p.171–182, (1996).

Google Scholar

[57] W. J. Maloney, M. Jasty, W. H. Harris, J. O. Galante, and J. J. Callaghan, Endosteal erosion in association with stable uncemented femoral components,, J Bone Joint Surg Am, vol. 72, no. 7, p.1025–1034, Aug. (1990).

DOI: 10.2106/00004623-199072070-00011

Google Scholar

[58] W. J. Maloney, R. L. Smith, T. P. Schmalzried, J. Chiba, D. Huene, and H. Rubash, Isolation and characterization of wear particles generated in patients who have had failure of a hip arthroplasty without cement,, J Bone Joint Surg Am, vol. 77, no. 9, p.1301–1310, Sep. 1995,.

DOI: 10.2106/00004623-199509000-00002

Google Scholar

[59] K. J. Margevicius, T. W. Bauer, J. T. McMahon, S. A. Brown, and K. Merritt, Isolation and characterization of debris in membranes around total joint prostheses,, J Bone Joint Surg Am, vol. 76, no. 11, p.1664–1675, Nov. 1994,.

DOI: 10.2106/00004623-199411000-00010

Google Scholar

[60] S. Santavirta, V. Hoikka, A. Eskola, Y. T. Konttinen, T. Paavilainen, and K. Tallroth, Aggressive granulomatous lesions in cementless total hip arthroplasty,, J Bone Joint Surg Br, vol. 72, no. 6, p.980–984, Nov. 1990,.

DOI: 10.1302/0301-620x.72b6.2246301

Google Scholar

[61] S. Santavirta, D. Nordström, K. Metsärinne, and Y. T. Konttinen, Biocompatibility of polyethylene and host response to loosening of cementless total hip replacement,, Clin Orthop Relat Res, no. 297, p.100–110, Dec. (1993).

DOI: 10.1097/00003086-199312000-00019

Google Scholar

[62] A. S. Shanbhag, J. J. Jacobs, T. T. Glant, J. L. Gilbert, J. Black, and J. O. Galante, Composition and morphology of wear debris in failed uncemented total hip replacement,, J Bone Joint Surg Br, vol. 76, no. 1, p.60–67, Jan. (1994).

DOI: 10.1302/0301-620x.76b1.8300684

Google Scholar

[63] N. Sugano, T. Nishii, K. Nakata, K. Masuhara, and K. Takaoka, Polyethylene sockets and alumina ceramic heads in cemented total hip arthroplasty. A ten-year study,, J Bone Joint Surg Br, vol. 77, no. 4, p.548–556, Jul. (1995).

DOI: 10.1302/0301-620x.77b4.7615596

Google Scholar

[64] A. B. Bankston, H. Cates, M. A. Ritter, E. M. Keating, and P. M. Faris, Polyethylene wear in total hip arthroplasty,, Clin Orthop Relat Res, no. 317, p.7–13, Aug. (1995).

Google Scholar

[65] T. P. Schmalzried, M. Jasty, and W. H. Harris, Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space,, J Bone Joint Surg Am, vol. 74, no. 6, p.849–863, Jul. (1992).

DOI: 10.2106/00004623-199274060-00006

Google Scholar

[66] T. P. Schmalzried, F. J. Dorey, and H. McKellop, The multifactorial nature of polyethylene wear in vivo,, J Bone Joint Surg Am, vol. 80, no. 8, p.1234–1242; discussion 1242-1243, Aug. 1998,.

DOI: 10.2106/00004623-199808000-00018

Google Scholar

[67] C. J. Sychterz, N. Shah, and C. A. Engh, Examination of wear in Duraloc acetabular components: two- to five-year evaluation of Hylamer and Enduron liners,, J Arthroplasty, vol. 13, no. 5, p.508–514, Aug. 1998,.

DOI: 10.1016/s0883-5403(98)90049-3

Google Scholar

[68] W. Wang, D. J. Ferguson, J. M. Quinn, A. H. Simpson, and N. A. Athanasou, Biomaterial particle phagocytosis by bone-resorbing osteoclasts,, J Bone Joint Surg Br, vol. 79, no. 5, p.849–856, Sep. 1997,.

DOI: 10.1302/0301-620x.79b5.0790849

Google Scholar

[69] S. T. Woolson and M. G. Murphy, Wear of the polyethylene of Harris-Galante acetabular components inserted without cement,, J Bone Joint Surg Am, vol. 77, no. 9, p.1311–1314, Sep. 1995,.

DOI: 10.2106/00004623-199509000-00003

Google Scholar

[70] M. Yamaguchi, T. W. Bauer, and Y. Hashimoto, Three-dimensional analysis of multiple wear vectors in retrieved acetabular cups,, J Bone Joint Surg Am, vol. 79, no. 10, p.1539–1544, Oct. 1997,.

DOI: 10.2106/00004623-199710000-00011

Google Scholar

[71] Society for Biomaterials Proceedings., http://www.proceedings.com/1473.html (accessed Jan. 28, 2021).

Google Scholar

[72] M. Thomsen and G. Willmann, [Ceramic couplings in orthopedic surgery],, Orthopade, vol. 32, no. 1, p.11–16, Jan. 2003,.

Google Scholar

[73] G. Ba, Z. Liang, H. Li, N. Du, J. Liu, and W. Hou, Simultaneous formation of mesopores and homojunctions in graphite carbon nitride with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution,, Applied Catalysis B: Environmental, vol. 253, p.359–368, Sep. 2019,.

DOI: 10.1016/j.apcatb.2019.04.084

Google Scholar

[74] T. Su, Z. Qin, H. Ji, and Z. Wu, An overview of photocatalysis facilitated by 2D heterojunctions,, Nanotechnology, vol. 30, Aug. 2019,.

DOI: 10.1088/1361-6528/ab3f15

Google Scholar

[75] T. Su et al., 2D/2D heterojunction of Ti 3 C 2 /g-C 3 N 4 nanosheets for enhanced photocatalytic hydrogen evolution,, Nanoscale, vol. 11, p.8138–8149, Feb. 2019,.

Google Scholar

[76] G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, and B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the 'holy grail' for the photocatalytic hydrogen evolution reaction under visible light,, Energy Environ. Sci., vol. 12, no. 7, p.2080–2147, Jul. 2019,.

DOI: 10.1039/c9ee00717b

Google Scholar

[77] G. Liao et al., Emerging graphitic carbon nitride-based materials for biomedical applications,, Progress in Materials Science, vol. 112, p.100666, Jul. 2020,.

DOI: 10.1016/j.pmatsci.2020.100666

Google Scholar

[78] R. Punyamurthy, D. Dhanalakshmi, R. G.R, B. Bennehalli, and S. Chikkol Venkateshappa, Mechanical properties of abaca fiber reinforced polypropylene composites: Effect of chemical treatment by benzenediazonium chloride,, Journal of King Saud University - Engineering Sciences, vol. 29, Oct. 2015,.

DOI: 10.1016/j.jksues.2015.10.004

Google Scholar

[79] R. C. Petersen, Discontinuous fiber-reinforced composites above critical length,, J Dent Res, vol. 84, no. 4, p.365–370, Apr. 2005,.

DOI: 10.1177/154405910508400414

Google Scholar

[80] M. K. Egbo, A fundamental review on composite materials and some of their applications in biomedical engineering,, Journal of King Saud University - Engineering Sciences, Jul. 2020,.

DOI: 10.1016/j.jksues.2020.07.007

Google Scholar

[81] L. Yue, K. Yang, X.-Y. Lou, Y.-W. Yang, and R. Wang, Versatile Roles of Macrocycles in Organic-Inorganic Hybrid Materials for Biomedical Applications,, Matter, vol. 3, no. 5, p.1557–1588, Nov. 2020,.

DOI: 10.1016/j.matt.2020.09.019

Google Scholar

[82] E. W. Fritsch and M. Gleitz, Ceramic femoral head fractures in total hip arthroplasty,, Clin Orthop Relat Res, no. 328, p.129–136, Jul. 1996,.

DOI: 10.1097/00003086-199607000-00021

Google Scholar

[83] N. Y. Otsuka and J. Schatzker, A case of fracture of a ceramic head in total hip arthroplasty,, Arch Orthop Trauma Surg, vol. 113, no. 2, p.81–82, 1994,.

DOI: 10.1007/bf00572910

Google Scholar

[84] B. Habermann, W. Ewald, M. Rauschmann, L. Zichner, and A. A. Kurth, Fracture of ceramic heads in total hip replacement,, Arch Orthop Trauma Surg, vol. 126, no. 7, p.464–470, Sep. 2006,.

DOI: 10.1007/s00402-006-0173-y

Google Scholar

[85] R. S. Nizard, L. Sedel, P. Christel, A. Meunier, M. Soudry, and J. Witvoet, Ten-year survivorship of cemented ceramic-ceramic total hip prosthesis,, Clin Orthop Relat Res, no. 282, p.53–63, Sep. (1992).

DOI: 10.1097/00003086-199209000-00007

Google Scholar

[86] M. Winter, P. Griss, G. Scheller, and T. Moser, Ten- to 14-year results of a ceramic hip prosthesis,, Clin Orthop Relat Res, no. 282, p.73–80, Sep. (1992).

DOI: 10.1097/00003086-199209000-00009

Google Scholar

[87] H. Mittelmeier and J. Heisel, Sixteen-years' experience with ceramic hip prostheses,, Clin Orthop Relat Res, no. 282, p.64–72, Sep. (1992).

DOI: 10.1097/00003086-199209000-00008

Google Scholar

[88] F. Snorrason, J. Kärrholm, G. Löwenhielm, S. Hietala, and L. Hansson, Poor fixation of the Mittelmeier hip prosthesis. A clinical, radiographic, and scintimetric evaluation,, Acta Orthopaedica Scandinavica, vol. 60, p.81–85, Jul. 2009,.

DOI: 10.3109/17453678909150100

Google Scholar

[89] K. Friedrich, Polymer composites for tribological applications,, Advanced Industrial and Engineering Polymer Research, vol. 1, no. 1, p.3–39, Oct. 2018,.

DOI: 10.1016/j.aiepr.2018.05.001

Google Scholar

[90] B. M. Wroblewski, P. A. Fleming, and P. D. Siney, Charnley low-frictional torque arthroplasty of the hip. 20-to-30 year results,, J Bone Joint Surg Br, vol. 81, no. 3, p.427–430, May 1999,.

DOI: 10.1302/0301-620x.81b3.0810427

Google Scholar

[91] M. H, S. Fw, L. B, C. P, and S. R, Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements,, Journal of orthopaedic research : official publication of the Orthopaedic Research Society, Mar. 1999. https://pubmed.ncbi.nlm.nih.gov/10221831/ (accessed Feb. 03, 2021).

DOI: 10.1002/jor.1100170203

Google Scholar

[92] R. Gul, Improved UHMWPE for use in total joint replacement,, Aug. (2005).

Google Scholar

[93] F.-W. Shen, H. A. McKellop, and R. Salovey, Irradiation of chemically crosslinked ultrahigh molecular weight polyethylene,, Journal of Polymer Science Part B: Polymer Physics, vol. 34, no. 6, p.1063–1077, 1996, doi: https://doi.org/10.1002/(SICI)1099-0488(19960430)34:6<1063::AID-POLB4>3.0.CO;2-Z.

DOI: 10.1002/(sici)1099-0488(19960430)34:6<1063::aid-polb4>3.0.co;2-z

Google Scholar

[94] R. H. Hopper, A. M. Young, K. F. Orishimo, and C. A. Engh, Effect of terminal sterilization with gas plasma or gamma radiation on wear of polyethylene liners,, J Bone Joint Surg Am, vol. 85, no. 3, p.464–468, Mar. 2003,.

DOI: 10.2106/00004623-200303000-00010

Google Scholar

[95] H. McKellop, F. W. Shen, B. Lu, P. Campbell, and R. Salovey, Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A hip-simulator study,, J Bone Joint Surg Am, vol. 82, no. 12, p.1708–1725, Dec. 2000,.

DOI: 10.2106/00004623-200012000-00004

Google Scholar

[96] P. Bracco, A. Bellare, A. Bistolfi, and S. Affatato, Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review,, Materials (Basel), vol. 10, no. 7, Jul. 2017,.

DOI: 10.3390/ma10070791

Google Scholar

[97] M. Deng and S. W. Shalaby, Properties of self-reinforced ultra-high-molecular-weight polyethylene composites,, Biomaterials, vol. 18, no. 9, p.645–655, Jan. 1997,.

DOI: 10.1016/s0142-9612(96)00194-9

Google Scholar

[98] Y.-H. Kim, J.-S. Kim, J.-W. Park, and J.-H. Joo, Periacetabular osteolysis is the problem in contemporary total hip arthroplasty in young patients,, J Arthroplasty, vol. 27, no. 1, p.74–81, Jan. 2012,.

DOI: 10.1016/j.arth.2011.03.022

Google Scholar

[99] J. A. D'Antonio et al., Five-year experience with Crossfire highly cross-linked polyethylene,, Clin Orthop Relat Res, vol. 441, p.143–150, Dec. 2005,.

Google Scholar

[100] G. Digas, J. Kärrholm, J. Thanner, H. Malchau, and P. Herberts, The Otto Aufranc Award. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis,, Clin Orthop Relat Res, no. 429, p.6–16, Dec. (2004).

DOI: 10.1097/01.blo.0000150314.70919.e3

Google Scholar

[101] O. K. Muratoglu and C. R. Bragdon, 15 - Highly Cross-Linked and Melted UHMWPE,, in UHMWPE Biomaterials Handbook (Third Edition), S. M. Kurtz, Ed. Oxford: William Andrew Publishing, 2016, p.264–273.

DOI: 10.1016/b978-0-323-35401-1.00015-6

Google Scholar

[102] O. K. Muratoglu et al., Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE),, Biomaterials, vol. 20, no. 16, p.1463–1470, Aug. 1999,.

DOI: 10.1016/s0142-9612(99)00039-3

Google Scholar

[103] W. H. Harris and O. K. Muratoglu, A review of current cross-linked polyethylenes used in total joint arthroplasty,, Clin Orthop Relat Res, no. 430, p.46–52, Jan. 2005,.

DOI: 10.1097/01.blo.0000152603.58384.e9

Google Scholar

[104] Biomaterials: A Nano Approach,, Routledge & CRC Press. https://www.routledge.com/Biomaterials-A-Nano-Approach/Ramakrishna-Ramalingam-Kumar-Soboyejo/p/book/9781420047813 (accessed Feb. 03, 2021).

DOI: 10.1201/b15739

Google Scholar

[105] M. Jk, C. Mf, and L. Mh, Foreign body reaction to polymeric debris following total hip arthroplasty,, Clinical orthopaedics and related research, Mar. 1987. https://pubmed.ncbi.nlm.nih.gov/3545602/ (accessed Feb. 03, 2021).

DOI: 10.1097/00003086-198703000-00035

Google Scholar

[106] W. C, History of self-experimentation in orthopaedics,, The Iowa orthopaedic journal, 2009. https://pubmed.ncbi.nlm.nih.gov/19742101/ (accessed Feb. 03, 2021).

Google Scholar

[107] T. McTighe, D. Brazil, and W. Bruce, Metallic Alloys in Total Hip Arthroplasty,, 2015, p.14–1 to 14.

Google Scholar

[108] S. Affatato, F. Traina, O. Ruggeri, and A. Toni, Wear of Metal-on-Metal Hip Bearings: Metallurgical Considerations after Hip Simulator Studies,, The International journal of artificial organs, vol. 34, p.1155–64, Dec. 2011,.

DOI: 10.5301/ijao.5000065

Google Scholar

[109] R. Ihaddadene, S. Affatato, M. Zavalloni, S. Bouzid, and M. Viceconti, Carbon composition effects on wear behaviour and wear mechanisms of metal-on-metal hip prosthesis,, Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. sup1, p.33–34, Aug. 2011,.

DOI: 10.1080/10255842.2011.591623

Google Scholar

[110] ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys - ASM International., https://www.asminternational.org/handbooks/-/journal_content/56/10192/06178G/PUBLICATION (accessed Feb. 03, 2021).

Google Scholar

[111] A. J. Clemow and B. L. Daniell, Solution treatment behavior of Co-Cr-Mo alloy,, J Biomed Mater Res, vol. 13, no. 2, p.265–279, Mar. 1979,.

DOI: 10.1002/jbm.820130208

Google Scholar

[112] D. J. W. McMinn, Ed., Modern Hip Resurfacing. London: Springer-Verlag, (2009).

Google Scholar

[113] R. W, G. Jo, and L. P, Evaluation of couple/crevice corrosion by prosthetic alloys under in vivo conditions,, Journal of biomedical materials research, Nov. 1978. https://pubmed.ncbi.nlm.nih.gov/739015/ (accessed Feb. 03, 2021).

Google Scholar

[114] W. C. Head, D. J. Bauk, and R. H. Emerson, Titanium as the material of choice for cementless femoral components in total hip arthroplasty,, Clin Orthop Relat Res, no. 311, p.85–90, Feb. (1995).

Google Scholar

[115] T. Dixit, I. Singh, and K. E. Prasad, Room and high temperature dry sliding wear behavior of Boron modified as-cast Ti-6Al-4V alloys against hardened steel,, Wear, vol. 420–421, p.207–214, Feb. 2019,.

DOI: 10.1016/j.wear.2018.10.021

Google Scholar

[116] I. Landor, P. Vavrik, A. Sosna, D. Jahoda, H. Hahn, and M. Daniel, Hydroxyapatite porous coating and the osteointegration of the total hip replacement,, Arch Orthop Trauma Surg, vol. 127, no. 2, p.81–89, Feb. 2007,.

DOI: 10.1007/s00402-006-0235-1

Google Scholar

[117] V. K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay, Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties,, Acta Biomaterialia, vol. 6, no. 8, p.3349–3359, Aug. 2010,.

DOI: 10.1016/j.actbio.2010.01.046

Google Scholar

[118] F. Matassi, A. Botti, L. Sirleo, C. Carulli, and M. Innocenti, Porous metal for orthopedics implants,, Clin Cases Miner Bone Metab, vol. 10, no. 2, p.111–115, May (2013).

Google Scholar

[119] D. K. Rajak, P. H. Wagh, P. L. Menezes, A. Chaudhary, and R. Kumar, Critical Overview of Coatings Technology for Metal Matrix Composites,, J Bio Tribo Corros, vol. 6, no. 1, p.12, Nov. 2019,.

DOI: 10.1007/s40735-019-0305-x

Google Scholar

[120] R. Kumar, M. H. Ahmadi, D. K. Rajak, and M. A. Nazari, A study on CO2 absorption using hybrid solvents in packed columns,, International Journal of Low-Carbon Technologies, vol. 14, no. 4, p.561–567, Nov. 2019,.

DOI: 10.1093/ijlct/ctz051

Google Scholar

[121] D. Rajak and P. Menezes, Application of Metal Matrix Composites in Engineering Sectors,, in Reference Module in Materials Science and Materials Engineering, (2021).

DOI: 10.1016/b978-0-12-803581-8.11832-6

Google Scholar

[122] D. K. Rajak and M. Gupta, Concluding Remarks and Future Directions,, in An Insight Into Metal Based Foams: Processing, Properties and Applications, D. K. Rajak and M. Gupta, Eds. Singapore: Springer, 2020, p.121–124.

DOI: 10.1007/978-981-15-9069-6_7

Google Scholar

[123] D. K. Rajak and M. Gupta, Applications of Metallic Foams,, in An Insight Into Metal Based Foams: Processing, Properties and Applications, D. K. Rajak and M. Gupta, Eds. Singapore: Springer, 2020, p.21–37.

DOI: 10.1007/978-981-15-9069-6_2

Google Scholar

[124] D. K. Rajak and M. Gupta, Acoustic, Damping, Thermal and Electrical Properties of Metal Foams,, in An Insight Into Metal Based Foams: Processing, Properties and Applications, D. K. Rajak and M. Gupta, Eds. Singapore: Springer, 2020, p.99–120.

DOI: 10.1007/978-981-15-9069-6_6

Google Scholar

[125] A.-S. J, M.-R. O, S. Hr, D.-E. Ja, F.-V. E, and R. Ca, Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis,, Computational and mathematical methods in medicine, 2016. https://pubmed.ncbi.nlm.nih.gov/27051460/ (accessed Feb. 03, 2021).

DOI: 10.1155/2016/6183679

Google Scholar

[126] C. Rm, B. A, F. J, and J. Lm, PEEK-OPTIMA TM as an alternative to cobalt chrome in the femoral component of total knee replacement: A preliminary study,, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, Nov. 2016. https://pubmed.ncbi.nlm.nih.gov/27637723/ (accessed Feb. 03, 2021).

DOI: 10.1177/0954411916667410

Google Scholar

[127] S. Kurtz and J. Devine, PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants,, Biomaterials, vol. 28, p.4845–69, Dec. 2007,.

DOI: 10.1016/j.biomaterials.2007.07.013

Google Scholar

[128] A. Wang, R. Lin, V. K. Polineni, A. Essner, C. Stark, and J. H. Dumbleton, Carbon fiber reinforced polyether ether ketone composite as a bearing surface for total hip replacement,, Tribology International, vol. 31, no. 11, p.661–667, Nov. 1998,.

DOI: 10.1016/s0301-679x(98)00088-7

Google Scholar

[129] T. M. Grupp et al., Biotribology of alternative bearing materials for unicompartmental knee arthroplasty,, Acta Biomater, vol. 6, no. 9, p.3601–3610, Sep. 2010,.

DOI: 10.1016/j.actbio.2010.04.003

Google Scholar

[130] C. L. Brockett, S. Carbone, A. Abdelgaied, J. Fisher, and L. M. Jennings, Influence of contact pressure, cross-shear and counterface material on the wear of PEEK and CFR-PEEK for orthopaedic applications,, Journal of the Mechanical Behavior of Biomedical Materials, vol. 63, p.10–16, Oct. 2016,.

DOI: 10.1016/j.jmbbm.2016.06.005

Google Scholar

[131] C. Delaunay, I. Petit, I. D. Learmonth, P. Oger, and P. A. Vendittoli, Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern,, Orthop Traumatol Surg Res, vol. 96, no. 8, p.894–904, Dec. 2010,.

DOI: 10.1016/j.otsr.2010.05.008

Google Scholar

[132] W. Brodner, P. Bitzan, V. Meisinger, A. Kaider, F. Gottsauner-Wolf, and R. Kotz, Elevated serum cobalt with metal-on-metal articulating surfaces,, J Bone Joint Surg Br, vol. 79, no. 2, p.316–321, Mar. 1997,.

DOI: 10.1302/0301-620x.79b2.0790316

Google Scholar

[133] N. J. Hallab, S. Anderson, T. Stafford, T. Glant, and J. J. Jacobs, Lymphocyte responses in patients with total hip arthroplasty,, J Orthop Res, vol. 23, no. 2, p.384–391, Mar. 2005,.

DOI: 10.1016/j.orthres.2004.09.001

Google Scholar

[134] J. J. Jacobs, N. J. Hallab, A. K. Skipor, and R. M. Urban, Metal degradation products: a cause for concern in metal-metal bearings?,, Clin Orthop Relat Res, no. 417, p.139–147, Dec. 2003,.

DOI: 10.1097/01.blo.0000096810.78689.62

Google Scholar

[135] X. Yang and C. R. Hutchinson, Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid,, Acta Biomater, vol. 42, p.429–439, Sep. 2016,.

DOI: 10.1016/j.actbio.2016.07.008

Google Scholar

[136] L. Dj, J. Ss, J. Tj, H. Nj, N. S, and N. Av, Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear,, The Journal of bone and joint surgery. British volume, Jan. 2010. https://pubmed.ncbi.nlm.nih.gov/20044676/ (accessed Feb. 03, 2021).

DOI: 10.1302/0301-620x.92b1.22770

Google Scholar

[137] R. J. Underwood, A. Zografos, R. S. Sayles, A. Hart, and P. Cann, Edge loading in metal-on-metal hips: low clearance is a new risk factor,, Proc Inst Mech Eng H, vol. 226, no. 3, p.217–226, Mar. 2012,.

DOI: 10.1177/0954411911431397

Google Scholar

[138] H. S. Tullos, B. L. McCaskill, R. Dickey, and J. Davidson, Total hip arthroplasty with a low-modulus porous-coated femoral component,, J Bone Joint Surg Am, vol. 66, no. 6, p.888–898, Jul. 1984,.

DOI: 10.2106/00004623-198466060-00009

Google Scholar

[139] J. Charnley and Z. Cupic, The Nine and Ten Year Results of the Low-Friction Arthroplasty of the Hip,, Clinical Orthopaedics and Related Research®, vol. 95, p.9–25, Sep. (1973).

DOI: 10.1097/00003086-197309000-00003

Google Scholar

[140] J. Charnley and D. K. Halley, Rate of wear in total hip replacement,, Clin Orthop Relat Res, no. 112, p.170–179, Oct. (1975).

DOI: 10.1097/00003086-197510000-00021

Google Scholar

[141] Z. Lp and W. Hg, Comparison of alumina-polyethylene and metal-polyethylene in clinical trials,, Clinical orthopaedics and related research, Sep. 1992. https://pubmed.ncbi.nlm.nih.gov/1516333/ (accessed Feb. 03, 2021).

DOI: 10.1097/00003086-199209000-00011

Google Scholar

[142] S. Das, D. K. Rajak, S. Khanna, and D. P. Mondal, Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate,, Materials, vol. 13, no. 3, Art. no. 3, Jan. 2020,.

DOI: 10.3390/ma13030783

Google Scholar

[143] P. Mohan, D. K. Rajak, C. I. Pruncu, A. Behera, V. Amigó-Borrás, and A. B. Elshalakany, Influence of β-phase stability in elemental blended Ti-Mo and Ti-Mo-Zr alloys,, Micron, vol. 142, p.102992, Mar. 2021,.

DOI: 10.1016/j.micron.2020.102992

Google Scholar

[144] Z. Yuan, Y. He, C. Lin, P. Liu, and K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications,, Journal of Materials Science & Technology, vol. 78, p.51–67, Jul. 2021,.

DOI: 10.1016/j.jmst.2020.10.066

Google Scholar

[145] M. Buciumeanu et al., Ti6Al4V cellular structures impregnated with biomedical PEEK - New material design for improved tribological behavior,, Tribology International, vol. 119, p.157–164, Mar. 2018,.

DOI: 10.1016/j.triboint.2017.10.038

Google Scholar

[146] P.-A. Vendittoli, C. Rivière, M. Lavigne, P. Lavoie, A. Alghamdi, and N. Duval, Alumina on alumina versus metal on conventional polyethylene: a randomized clinical trial with 9 to 15 years follow-up,, Acta Orthop Belg, vol. 79, no. 2, p.181–190, Apr. (2013).

Google Scholar

[147] M. J. Chmell, R. Poss, W. H. Thomas, and C. B. Sledge, Early failure of Hylamer acetabular inserts due to eccentric wear,, J Arthroplasty, vol. 11, no. 3, p.351–353, Apr. 1996,.

DOI: 10.1016/s0883-5403(96)80093-3

Google Scholar

[148] M. S. Lehil and K. J. Bozic, Trends in total hip arthroplasty implant utilization in the United States,, J Arthroplasty, vol. 29, no. 10, p.1915–1918, Oct. 2014,.

DOI: 10.1016/j.arth.2014.05.017

Google Scholar

[149] E. A. Magnissalis, G. Eliades, and T. Eliades, Multitechnique characterization of articular surfaces of retrieved ultrahigh molecular weight polyethylene acetabular sockets,, J Biomed Mater Res, vol. 48, no. 3, p.365–373, 1999,.

DOI: 10.1002/(sici)1097-4636(1999)48:3<365::aid-jbm22>3.0.co;2-t

Google Scholar

[150] G. P, The Hard on Hard Bearings in THA - Current concepts,, Journal of orthopaedics, Sep. 19, 2014. https://pubmed.ncbi.nlm.nih.gov/25264403/ (accessed Feb. 03, 2021).

Google Scholar

[151] S. Affatato, A. Ruggiero, and M. Merola, Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings,, Composites Part B: Engineering, vol. 83, p.276–283, Dec. 2015,.

DOI: 10.1016/j.compositesb.2015.07.019

Google Scholar

[152] P. Ys, M. Yw, L. Sj, Y. Jm, A. G, and C. Yl, Early osteolysis following second-generation metal-on-metal hip replacement,, The Journal of bone and joint surgery. American volume, Jul. 2005. https://pubmed.ncbi.nlm.nih.gov/15995119/ (accessed Feb. 03, 2021).

DOI: 10.2106/jbjs.d.02641

Google Scholar

[153] L. Zagra and E. Gallazzi, Bearing surfaces in primary total hip arthroplasty,, EFORT Open Reviews, vol. 3, no. 5, p.217, May 2018,.

DOI: 10.1302/2058-5241.3.180300

Google Scholar

[154] J. P. Garino, Ceramic Hip Replacement History,, Seminars in Arthroplasty, vol. 22, no. 4, p.214–217, Dec. 2011,.

DOI: 10.1053/j.sart.2011.10.003

Google Scholar

[155] S. M. Kurtz and K. Ong, Chapter 6 - Contemporary Total Hip Arthroplasty: Hard-on-Hard Bearings and Highly Crosslinked UHMWPE,, in UHMWPE Biomaterials Handbook (Second Edition), S. M. Kurtz, Ed. Boston: Academic Press, 2009, p.55–79.

DOI: 10.1016/b978-0-12-374721-1.00006-7

Google Scholar

[156] C. W. Colwell et al., Ceramic-on-ceramic total hip arthroplasty early dislocation rate,, Clin Orthop Relat Res, vol. 465, p.155–158, Dec. 2007,.

DOI: 10.1097/blo.0b013e31815072e4

Google Scholar

[157] W. G. Hamilton, J. P. McAuley, D. A. Dennis, J. A. Murphy, T. J. Blumenfeld, and J. Politi, THA with Delta ceramic on ceramic: results of a multicenter investigational device exemption trial,, Clin Orthop Relat Res, vol. 468, no. 2, p.358–366, Feb. 2010,.

DOI: 10.1007/s11999-009-1091-4

Google Scholar

[158] F. Traina, M. De Fine, B. Bordini, and A. Toni, Risk factors for ceramic liner fracture after total hip arthroplasty,, Hip Int, vol. 22, no. 6, p.607–614, Dec. 2012,.

DOI: 10.5301/hip.2012.10339

Google Scholar

[159] S. A. Sexton et al., The role of patient factors and implant position in squeaking of ceramic-on-ceramic total hip replacements,, J Bone Joint Surg Br, vol. 93, no. 4, p.439–442, Apr. 2011,.

DOI: 10.1302/0301-620x.93b4.25707

Google Scholar

[160] T. Kiyama, T. L. Kinsey, and O. M. Mahoney, Can Squeaking With Ceramic-On-Ceramic Hip Articulations In Total Hip Arthroplasty Be Avoided?,, The Journal of Arthroplasty, vol. 28, no. 6, p.1015–1020, Jun. 2013,.

DOI: 10.1016/j.arth.2012.10.014

Google Scholar

[161] S. M. Tai, S. Munir, W. L. Walter, S. J. Pearce, W. K. Walter, and B. A. Zicat, Squeaking in large diameter ceramic-on-ceramic bearings in total hip arthroplasty,, J Arthroplasty, vol. 30, no. 2, p.282–285, Feb. 2015,.

DOI: 10.1016/j.arth.2014.09.010

Google Scholar

[162] C. C. Yang, R. H. Kim, and D. A. Dennis, The squeaking hip: a cause for concern-disagrees,, Orthopedics, vol. 30, no. 9, p.739–742, Sep. 2007,.

DOI: 10.3928/01477447-20070901-33

Google Scholar

[163] A. S. Ranawat and C. S. Ranawat, The squeaking hip: a cause for concern-agrees,, Orthopedics, vol. 30, no. 9, p.738, 743, Sep. 2007,.

DOI: 10.3928/01477447-20070901-32

Google Scholar

[164] G. H. Isaac et al., Ceramic-on-metal bearings in total hip replacement: whole blood metal ion levels and analysis of retrieved components,, J Bone Joint Surg Br, vol. 91, no. 9, p.1134–1141, Sep. 2009,.

DOI: 10.1302/0301-620x.91b9.22306

Google Scholar

[165] C. G. Figueiredo-Pina, Y. Yan, A. Neville, and J. Fisher, Understanding the differences between the wear of metal-on-metal and ceramic-on-metal total hip replacements,, Proc Inst Mech Eng H, vol. 222, no. 3, p.285–296, Apr. 2008,.

DOI: 10.1243/09544119jeim363

Google Scholar

[166] M. P. Bolognesi and C. K. Ledford, Metal-on-Metal Total Hip Arthroplasty: Patient Evaluation and Treatment,, J Am Acad Orthop Surg, vol. 23, no. 12, p.724–731, Dec. 2015,.

DOI: 10.5435/jaaos-d-14-00183

Google Scholar

[167] A. V. Lombardi et al., The Hip Society: algorithmic approach to diagnosis and management of metal-on-metal arthroplasty,, J Bone Joint Surg Br, vol. 94, no. 11 Suppl A, p.14–18, Nov. 2012,.

Google Scholar

[168] M. F. Butler, A. M. Donald, and A. J. Ryan, Time resolved simultaneous small- and wide-angle X-ray scattering during polyethylene deformation—II. Cold drawing of linear polyethylene,, Polymer, vol. 39, no. 1, p.39–52, Jan. 1998,.

DOI: 10.1016/s0032-3861(97)00226-7

Google Scholar

[169] B. Ra, J. Jj, Q. Lr, R. Ag, and G. Jo, Primary cementless acetabular reconstruction in patients younger than 50 years old. 7- to 11-year results,, Clinical orthopaedics and related research, Nov. 1997. https://pubmed.ncbi.nlm.nih.gov/9372773/ (accessed Feb. 03, 2021).

DOI: 10.1097/00003086-199711000-00022

Google Scholar

[170] L. Pj, T. Cc, S.-H. Rp, W. Wl, W. Wk, and Z. Ba, Third-generation alumina-on-alumina ceramic bearings in cementless total hip arthroplasty,, The Journal of bone and joint surgery. American volume, Dec. 2007. https://pubmed.ncbi.nlm.nih.gov/18056500/ (accessed Feb. 03, 2021).

DOI: 10.2106/jbjs.f.01466

Google Scholar

[171] F. J et al., Wear of surface engineered metal-on-metal hip prostheses,, Journal of materials science. Materials in medicine, Mar. 2004. https://pubmed.ncbi.nlm.nih.gov/15334994/ (accessed Feb. 03, 2021).

Google Scholar

[172] J. E. Nevelos, E. Ingham, C. Doyle, A. B. Nevelos, and J. Fisher, Wear of HIPed and non-HIPed alumina-alumina hip joints under standard and severe simulator testing conditions,, Biomaterials, vol. 22, no. 16, p.2191–2197, Aug. 2001,.

DOI: 10.1016/s0142-9612(00)00361-6

Google Scholar

[173] D. Jm, C. P, and M. A, Wear analysis of retrieved alumina heads and sockets of hip prostheses,, Journal of biomedical materials research, Dec. 1989. https://pubmed.ncbi.nlm.nih.gov/2613740/ (accessed Feb. 03, 2021).

DOI: 10.1002/jbm.820231405

Google Scholar