Investigation of the Effect of Abutment Angle Tolerance on the Stress Created in the Fixture and Screw in Dental Implants Using Finite Element Analysis

Article Preview

Abstract:

Today, an artificial tooth root called a dental implant is used to replace lost tooth function. Treatment with dental implants is considered an effective and safe method. However, in some cases, the use of dental implants had some failures. The success of dental implants is influenced by several biomechanical factors such as loading type, used material properties, shape and geometry of implants, quality and quantity of bone around implants, surgical method, lack of rapid and proper implant surface's integration with the jaw bone, etc. The main purpose of functional design is to investigate and control the stress distribution on dental implants to optimize their performance. Finite element analysis allows researchers to predict the stress distribution in the bone implant without the risk and cost of implant placement. In this study, the stresses created in the 3A.P.H.5 dental implant's titanium fixture and screw due to the change in abutment angles tolerance have been investigated. The results show that although the fixture and the screw's load and conditions are the same in different cases, the change of the abutment angle and the change in the stress amount also made a difference in the location of maximum stress. The 21-degree abutment puts the fixture in a more critical condition and increases the chance of early plasticization compared to other states. The results also showed that increasing the abutment angle to 24 degrees reduces the stress in the screw, but decreasing the angle to 21 degrees leads to increased screw stress and brings it closer to the fracture.

You might also be interested in these eBooks

Info:

Pages:

63-76

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hariprasad, V. Kundapur, H. S. Mohammed, M. Anand, G. S. Amarnath, A review on biomaterials in dental implantology,, International journal of biomedical science: IJBS 11.3 (2015), pp.113-120.

Google Scholar

[2] M. D. Fabbro, C. M. Bellini, D. Romeo, L. Francetti, Tilted implants for the rehabilitation of edentulous jaws: a systematic review,, Clinical implant dentistry and related research 14.4 (2012), pp.612-621.

DOI: 10.1111/j.1708-8208.2010.00288.x

Google Scholar

[3] T. H. Lan, J. K. Du, C. Y. Pan, H. E. Lee, W. H. Chung, Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area,,, Clinical oral investigations 16.2 (2012), pp.363-369.

DOI: 10.1007/s00784-011-0517-z

Google Scholar

[4] M.W. Klotz, T.D. Taylor, A.J. Goldberg, Wear at the titanium-zirconia implant-abutment interface: a pilot study,, The International journal of oral & maxillofacial implants 26.5 (2011), pp.970-975.

Google Scholar

[5] P. Gehrke, J. Alius, C. Fischer, K. J. Erdwlt, F. Beuer, Retentive strength of two‐piece CAD/CAM zirconia implant abutments,, Clinical implant dentistry and related research 16.6 (2014), pp.920-925.

DOI: 10.1111/cid.12060

Google Scholar

[6] J. Torsten, Data on implant failures will show different results depending on how patients are compiled and analyzed: A retrospective study on 3902 individual patients treated either with one single implant or implants in the edentulous upper jaw,, Clinical Implant Dentistry and Related Research 22.2 (2020), pp.226-236.

DOI: 10.1111/cid.12886

Google Scholar

[7] S. Roehling, M. Astasov-Frauenhoffer, I. Hauser-Gerspach, O. Braissant, H. Woelfler, In vitro biofilm formation on titanium and zirconia implant surfaces,, Journal of periodontology 88.3 (2017), pp.298-307.

DOI: 10.1902/jop.2016.160245

Google Scholar

[8] P. Van de Heyning, M. Atlas, W. D. Baumgartner, M. Caversaccio, J. Gavilan, B. Godey, W. Gstottner, R. Hagen, L. Yongxin, E. Karltorp. M. Kameswaran, The reliability of hearing implants: report on the type and incidence of cochlear implant failures,, Cochlear Implants International (2020), pp.1-10.

DOI: 10.1080/14670100.2020.1735678

Google Scholar

[9] E.S. Kim, S.Y. Shin, Influence of the implant abutment types and the dynamic loading on initial screw loosening,, journal of advanced prosthodontics 5.1 (2013), pp.21-28.

DOI: 10.4047/jap.2013.5.1.21

Google Scholar

[10] M. Stimmelmayr, D. Edelhoff, J. F. Guth, K. Erdelt, A. Happe, F. Beuer, Wear at the titanium–titanium and the titanium–zirconia implant–abutment interface: A comparative in vitro study,, Dental Materials 28.12 (2012), pp.1215-1220.

DOI: 10.1016/j.dental.2012.08.008

Google Scholar

[11] C.D. Nascimento, M.S. Pita, F.H.N.C. Fernandes, V. Pedrazzi, R.F.A. Junior, R.F. Ribeiro, Bacterial adhesion on the titanium and zirconia abutment surfaces,, Clinical oral implants research 25.3 (2014), pp.337-343.

DOI: 10.1111/clr.12093

Google Scholar

[12] R. S. Boggan, J. T. Strong, C. E. Misch, M. W. Bides, Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants., The Journal of prosthetic dentistry 82.4 (1999), pp.436-440.

DOI: 10.1016/s0022-3913(99)70030-2

Google Scholar

[13] O. Kayabaşı, E. Yüzbasıoğlu, F. Erzincanli Static, dynamic and fatigue behaviors of dental implant using finite element method,, Advances in engineering software 37.10 (2006), pp.649-658.

DOI: 10.1016/j.advengsoft.2006.02.004

Google Scholar

[14] L. Steinebrunner, S. Wolfart, K. Ludwig, M. Kern Implant–abutment interface design affects fatigue and fracture strength of implants., Clinical Oral Implants Research 19.12 (2008), pp.1276-1284.

DOI: 10.1111/j.1600-0501.2008.01581.x

Google Scholar

[15] A. Khraisat, R. Stegaroiu, S. Nomura, O. Miyakawa, Fatigue resistance of two implant/abutment joint designs,, The Journal of prosthetic dentistry 88.6 (2002), pp.604-610.

DOI: 10.1067/mpr.2002.129384

Google Scholar

[16] M. Prados-Privado, J.C. Prados-Frutos, J.L. Calvo-Guirado, J.A. Bea, A random fatigue of mechanize titanium abutment studied with Markoff chain and stochastic finite element formulation,, Computer Methods in Biomechanics and Biomedical Engineering 19.15 (2016): pp.1583-1591.

DOI: 10.1080/10255842.2016.1170124

Google Scholar

[17] A. Swamy, B.S. Shenoy, I. N. Aparna, Effect of grid size on fatigue life calculations of a dental implant,, Journal of Computational Methods in Sciences and Engineering 17.2 (2017), pp.289-293.

DOI: 10.3233/jcm-170710

Google Scholar

[18] Y.C. Cheng, C. P. Jiang, D. H. Lin, Finite element based optimization design for a one-piece zirconia ceramic dental implant under dynamic loading and fatigue life validation,, Structural and Multidisciplinary Optimization 59.3 (2019), pp.835-849.

DOI: 10.1007/s00158-018-2104-2

Google Scholar

[19] A. Boukhlif, A. Merdji, S. Roy, H. Alkhaldi, I. Abu-Alshaikh, N. Della, C. M. Cristache, R. Hillstrom, Effect of supporting implants inclination on stability of fixed partial denture: A finite element study. Proceedings of the Institution of Mechanical Engineers, Part H,, Journal of Engineering in Medicine, 234(10), (2020), pp.1162-1171.

DOI: 10.1177/0954411920944109

Google Scholar

[20] Y. Gupta, R. Iyer, V. K. Dommeti, E. Nutu, M. Rana, A. Merdji, J. K. Biswas, S. Roy, "Design of dental implant using design of experiment and topology optimization: A finite element analysis study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, (2020).

DOI: 10.1177/0954411920967146

Google Scholar

[21] V. Jain, V. K. Dommeti, E. Nutu, A. Merdji, J. K. Biswas, S. Roy, August. Mechanical response of taper dental implants using finite element analysis,, In IOP Conference Series: Materials Science and Engineering, Vol. 912, No. 2, (2020).

DOI: 10.1088/1757-899x/912/2/022052

Google Scholar

[22] A. Eser, T. Albrecht, S. Heintze, FEM Simulations of ISO 14801 Implant Fatigue Test Setup., Conference Paper, (2018).

Google Scholar

[23] F. Bayata, C. Yildiz, The effects of design parameters on mechanical failure of Ti-6Al-4V implants using finite element analysis,, Engineering Failure Analysis, 110 (2020).

DOI: 10.1016/j.engfailanal.2020.104445

Google Scholar

[24] Y. Luo, L. Yang, M. Tian, Application of biomedical-grade titanium alloys in trabecular bone and artificial joints,, In Biomaterials and Medical Tribology, Woodhead Publishing, (2013), pp.181-216.

DOI: 10.1533/9780857092205.181

Google Scholar

[25] M. Prados-Privado, S. A. Gehrke, R. Rojo, J. C. Prados-Frutos, Complete mechanical characterization of an external hexagonal implant connection: in vitro study, 3D FEM, and probabilistic fatigue,, Medical & biological engineering & computing, 56(12), (2018), pp.2233-2244.

DOI: 10.1007/s11517-018-1846-8

Google Scholar