Bioactive Glass Modified Calcium Phosphate Cement with Improved Bioactive Properties: A Potential Material for Dental Pulp-Capping Approaches

Article Preview

Abstract:

Direct pulp capping (DPC) is one of the treatment plans for deep caries with mechanical pulp exposure that can replace invasive treatments. This study aimed to assess the apatite-forming ability and solubility of a calcium phosphate cement (CPC) modified with bioactive glass (BG) as a potential bioactive material for DPC.Three different biomaterials including CPC, BG, and CPC/BG composite were used in this study. For bioactivity evaluation, specimens were immersed in simulated body fluid (SBF) for 5 time periods (3, 7, 14, 21 and 28 days). The samples were analyzed by SEM, EDS and XRD to confirm the formation of hydroxyapatite. The solubility was calculated by measuring the initial and final mass according to the ISO 6876 specifications.According to the results of this study, SEM observations and XRD analysis revealed higher formation of hydroxyapatite crystals in the CPC/BG Group and also at the shorter time than those in the CPC and BG groups. Concerning solubility, the CPC group showed the most solubility after 7 days and the BG group showed the lowest one. At this time the difference between CPC and BG groups was statistically meaningful (p value=0.003). After 30 days the CPC/BG group exhibited the lowest solubility value. At the day 30, the CPC and BG groups showed significant difference in their solubility (p value=0.04).).Based on the results, addition of BG to CPC improved bioactivity properties of CPC material and did not affect its solubility adversely. The CPC/BG composite seems to be a promising material for DPC. Further in vivo studies are needed to prove its clinical success.

You might also be interested in these eBooks

Info:

Pages:

1-14

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Hargreaves, L.H. Berman, Cohen's pathways of the pulp expert consult, Elsevier Health Sciences, 2015, pp.504-21.

Google Scholar

[2] S. Utneja, R.R. Nawal, S. Talwar, M. Verma, Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications, Restor Dent Endod. 40 (2015) 1-13.

DOI: 10.5395/rde.2015.40.1.1

Google Scholar

[3] P.K.M. Yasini E, Clinical survey of successfulness of DPC with MTA and calcium hydroxide, J Dent Med. 1 (2004) 19-26.

Google Scholar

[4] A. Qureshi, E. Soujanya, P. Nandakumar, Recent advances in pulp capping materials: an overview, Journal of clinical and diagnostic research: JCDR. 8 (2014) 316.

DOI: 10.7860/jcdr/2014/7719.3980

Google Scholar

[5] W.L. da Rosa, A.R. Cocco, T.M.d. Silva, L.C. Mesquita, A.D. Galarca, A.F.d. Silva, E. Piva, C urrent trends and future perspectives of dental pulp capping materials: A systematic review, J Biomed Mater Res B. 106 (2018) 1358-1368.

DOI: 10.1002/jbm.b.33934

Google Scholar

[6] M. Kunert,.M. Lukomska-Szymanska, Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article, Materials(Basel). 13 (2020) 1204.

DOI: 10.3390/ma13051204

Google Scholar

[7] C.G. Espir, J.M. Guerreiro-Tanomaru, R. Spin-Neto, G.M. Chávez-Andrade, F.L.C.V. Berbert, M. Tanomaru-Filho, Solubility and bacterial sealing ability of MTA and root-end filling materials, J App Oral Sci. 24 (2016) 121-125.

DOI: 10.1590/1678-775720150437

Google Scholar

[8] J.F. McCabe, A.W. Walls, Applied dental materials, John Wiley & Sons (2013).

Google Scholar

[9] M. Gandolfi, P. Taddei, A. Tinti, C. Prati, Apatite‐forming ability (bioactivity) of ProRoot MTA, Int Endod J. 43 (2010) 917-929.

DOI: 10.1111/j.1365-2591.2010.01768.x

Google Scholar

[10] H.H. Xu, P. Wang, L. Wang, C. Bao, Q. Chen, M.D. Weir, L.C. Chow, L. Zhao, X. Zhou, M.A. Reynolds, Calcium phosphate cements for bone engineering and their biological properties, Bone Res. 5 (2017) 17056.

DOI: 10.1038/boneres.2017.56

Google Scholar

[11] R.E. McDonald, D.R. Avery, G.K. Stookey, J.R. Chin, J.E. Kowolik, Dental caries in the child and adolescent, McDonald and Avery Dentistry for the Child and Adolescent, Elsevier Inc. 2011, pp.346-60.

DOI: 10.1016/b978-0-323-05724-0.50014-x

Google Scholar

[12] W. Cao, L.L. Hench, Bioactive materials. Ceram Int. 22 (1996) 493-507.

Google Scholar

[13] G. Zadora, Z. Brożek-Mucha, SEM–EDX—a useful tool for forensic examinations, Mate Chem Phys. 81 (2003) 345-348.

DOI: 10.1016/s0254-0584(03)00018-x

Google Scholar

[14] G. Ciobanu, G. Carja, O. Ciobanu, I. Sandu, A. Sandu, SEM and EDX studies of bioactive hydroxyapatite coatings on titanium implants, Micron. 40 (2009) 143-146.

DOI: 10.1016/j.micron.2007.11.011

Google Scholar

[15] K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM, J Nat Sci. 42 (2008) 357-361.

Google Scholar

[16] M. Sena, Y. Yamashita, Y. Nakano, M. Ohgaki, S. Nakamura, K. Yamashita, Y. Takagi, Octacalcium phosphate-based cement as a pulp-capping agent in rats, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 97(6) (2004) 749-55.

DOI: 10.1016/j.tripleo.2003.10.029

Google Scholar

[17] S.M. Rabiee, New Generation of Bone Cements, J Babol Univ Med Sci 12 (2010).

Google Scholar

[18] T.M. Walton R, Principles and practice of endodontics, Elsevier Inc2015, pp.21-9.

Google Scholar

[19] L. Yu, Y. Li, K. Zhao, Y. Tang, Z. Cheng, J. Chen, Y. Zang, J. Wu, L. Kong, S. Liu, W. Lei, Z. Wu, A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One 8(4) (2013) e62570.

DOI: 10.1371/journal.pone.0062570

Google Scholar

[20] A. Hoppe, A.R. Boccaccini, Biological impact of bioactive glasses and their dissolution products,. Front Oral Biol. 17(2015) 22-32.

Google Scholar

[21] R. Haghgoo, N.J. Naderi, Comparison of calcium hydroxide and bioactive glass after direct pulp capping in primary teeth, Journal of Dentistry of Tehran University of Medical Sciences 4 (2007) 155-159.

Google Scholar

[22] G. Kaur, O.P. Pandey, K. Singh, D. Homa, B. Scott, G. Pickrell, A review of bioactive glasses: their structure, properties, fabrication and apatite formation, J Biomed Mater Res A. 102 (2014) 254-274.

DOI: 10.1002/jbm.a.34690

Google Scholar

[23] A. Axrap, J. Wang, Y. Liu, M. Wang, A. Yusuf, Study on adhesion, proliferation and differentiation of osteoblasts promoted by new absorbable bioactive glass injection in vitro, Eur Rev Med Pharmacol Sci. 20 (2016) 4677-4681.

Google Scholar

[24] J.Soo-Kyung, L. Jung-Hwan, L.Hae-Hyoung, The biomineralization of a bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells, BioMed Res Int. 2017 (2017).

DOI: 10.1155/2017/2495282

Google Scholar

[25] A. D'Onofrio, N. Kent, S. Shahdad, R. Hill, Development of novel strontium containing bioactive glass based calcium phosphate cement. Dent Mater 32 (2016) 703-712.

DOI: 10.1016/j.dental.2016.03.006

Google Scholar

[26] A.C. Renno, F.C. van de Watering, M.R. Nejadnik, M.C. Crovace, E.D. Zanotto, J.G. Wolke, J.A. Jansen, J.J. van den Beucken, Incorporation of bioactive glass in calcium phosphate cement: An evaluation, Acta Biomater 9 (2013) 5728-39.

DOI: 10.1016/j.actbio.2012.11.009

Google Scholar

[27] A. Renno, F. Van De Watering, M. Nejadnik, M. Crovace, E. Zanotto, J. Wolke, J. Jansen, J.J.A.b. Van Den Beucken, Incorporation of bioactive glass in calcium phosphate cement: An evaluation, Acta Biomater.9(2013) 5728-5739.

DOI: 10.1016/j.actbio.2012.11.009

Google Scholar

[28] A. Renno, M. Nejadnik, F. Van De Watering, M. Crovace, E. Zanotto, J. Hoefnagels, J. Wolke, J. Jansen, J. Van Den Beucken, Incorporation of bioactive glass in calcium phosphate cement: Material characterization and in vitro degradation, J Biomed Mater Res A 101(2013) 2365-2373.

DOI: 10.1002/jbm.a.34531

Google Scholar

[29] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T.J.J.o.b.m.r. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3, J Biomed Mater Res. 24 (1990) 721-734.

DOI: 10.1002/jbm.820240607

Google Scholar

[30] S. Naghibi, M.A.F. Sani, H.R.M.J.C.I. Hosseini, Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol–gel technique, Ceram Int. 40(3) (2014) 4193-4201.

DOI: 10.1016/j.ceramint.2013.08.077

Google Scholar

[31] M. Behroozibakhsh, H. Hajizamani, K. Shekofteh, M. Otadi, M. Ghavami-Lahiji, N.S.F.J.J.o.o.b. Nazari, Comparative assessment of the crystalline structures of powder and bulk human dental enamel by X-ray diffraction analysis, J Oral biosci. 61 (2019) 173-178.

DOI: 10.1016/j.job.2019.06.003

Google Scholar

[32] International Organization for Standardization ISO (2012).NO 6876.Dentistry-Root canal sealing materials.

Google Scholar

[33] A. Bigi, E. Boanini, D. Walsh, S. Mann, Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte‐Mediated Crystallization, Angew Chem Int. 41 (2002) 2163-2166.

DOI: 10.1002/1521-3773(20020617)41:12<2163::aid-anie2163>3.0.co;2-g

Google Scholar

[34] D.U. Tulyaganov, M.E. Makhkamov, A. Urazbaev, A. Goel, J.M.F. Ferreira, Synthesis, processing and characterization of a bioactive glass composition for bone regeneration, Ceram Int. 39 (2013) 2519-2526.

DOI: 10.1016/j.ceramint.2012.09.011

Google Scholar

[35] I. Kansal, A. Goel, D.U. Tulyaganov, L.F. Santos, J.M.F. Ferreira, Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses, J Mater Chem. 21 (2011) 8074-8084.

DOI: 10.1039/c1jm10811e

Google Scholar

[36] S.K. Arepalli, H. Tripathi, S.K. Hira, P.P. Manna, R. Pyare, S.J.M.S. Singh, E. C, Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses, Mater Sci Eng C. 69 (2016) 108-116.

DOI: 10.1016/j.msec.2016.06.070

Google Scholar

[37] A. Oyane, K. Onuma, A. Ito, H.M. Kim, T. Kokubo, T. Nakamura , Formation and growth of clusters in conventional and new kinds of simulated body fluids, J Biomed Mater Res A. 64 (2003) 339-348.

DOI: 10.1002/jbm.a.10426

Google Scholar

[38] M. Mačković, A. Hoppe, R. Detsch, D. Mohn, W.J. Stark, E. Spiecker, A. R. Boccaccini, Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility, J Nanopart Res. 14 (2012) 966.

DOI: 10.1007/s11051-012-0966-6

Google Scholar

[39] L. Yu, Y. Li, K. Zhao, Y. Tang, Z. Cheng, J. Chen, Y. Zang, J. Wu, L. Kong, S. Liu, W.Lei, Z.Wu. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration, PLoS One. 8(4) (2013) e62570.

DOI: 10.1371/journal.pone.0062570

Google Scholar

[40] Q. He, H. Chen, L. Huang, J. Dong, D. Guo, M. Mao, L. Kong, Y. Li, Z. Wu, W. Lei, Porous surface modified bioactive bone cement for enhanced bone bonding, PLoS One. 7(8) (2012) e42525.

DOI: 10.1371/journal.pone.0042525

Google Scholar

[41] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro, Process of formation of bone-like apatite layer on silica gel, J Mater Sci Mater Med. 4 (1993) 127-131.

DOI: 10.1007/bf00120381

Google Scholar

[42] A.A. Zadpoor, Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials, Mater Sci Mater Med C. 35 (2014) 134-143.

DOI: 10.1016/j.msec.2013.10.026

Google Scholar

[43] N. Nezafati, F. Moztarzadeh, S. Hesaraki, M. Mozafari, Synergistically reinforcement of a self-setting calcium phosphate cement with bioactive glass fibers, Ceram Int 37 (2011) 927-934.

DOI: 10.1016/j.ceramint.2010.11.002

Google Scholar

[44] A. Sadiasa, S.K. Sarkar, R.A. Franco, Y.K. Min, B.T. Lee, Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration, J Biomater Appl. 28 (2014) 739-756.

DOI: 10.1177/0885328213478256

Google Scholar

[45] C. Liu, C.-W. Chen, P. Ducheyne, In vitro surface reaction layer formation and dissolution of calcium phosphate cement–bioactive glass composites, Biomed Mater 3 (2008) 034111.

DOI: 10.1088/1748-6041/3/3/034111

Google Scholar

[46] A. Mabrouk, A. Bachar, A. Atbir, C. Follet, C. Mercier, A. Tricoteaux, A. Leriche, S. Hampshire, Mechanical Properties, Structure, Bioactivity and Cytotoxicity of Bioactive Na-Ca-Si-PO-(N) Glasses, J Mech Behav Biomed Mater 86(2018)284-293.

DOI: 10.1016/j.jmbbm.2018.06.023

Google Scholar