[1]
H. A. Ibrahim, I. A. Imam, A. M. Bello, U. Umar, S. Muhammad, and S. A. Abdullahi, The Potential of Nigerian Medicinal Plants as Antimalarial Agent : A Review, Int. J. Sci. Technol., 2 (8) (2012) 600–605.
Google Scholar
[2]
I. A. Al-Omar, A. M. Eligail, R. M. Al-Ashban, and A. H. Shah, Effect of falciparum malaria infection on blood cholesterol and platelets, J. Saudi Chem. Soc., 14 (1) (2010) 83–89.
DOI: 10.1016/j.jscs.2009.12.013
Google Scholar
[3]
D. E. Ejebe, J. O. T. Emudainahwo, T. C. Ozoko, I. M. Siminilayi, C. O. Esume, and U. V. Maduadi, An Investigation into the anti-Plasmodium Effect of the Ethanol Extract of the Leaves of Helianthus annus in Swiss Albino Mice. Glob. J. Pharmacol., 5 (2) (2011) 92–96.
Google Scholar
[4]
M. Akkawi, Q. Aburemeleh, S. Jaber, M. Qutob, and P. Lutgen, The effect of Artemisia sieberi extracts on the Formation of β -Hematin, British J. Pharmacol. Toxicol., 5 (1) (2014) 49–54.
DOI: 10.19026/bjpt.5.5417
Google Scholar
[5]
U. M. E. Dibua, A. Kalu, A. A. Attama, C. O. Esimone, and J. E. Eyo, In vivo and in vitro evaluatioon of the inhibitory effect of some medicinal plant extracts on haemozoin concentration, Anim. Res. Int., 10 (1) (2013) 1699–1712.
Google Scholar
[6]
S. H. T. Ifoue, C. T. Mofor, I. Gouado, G. Teto, T. Asonganyi, and P. H. A. Zollo, Evaluation of oxidative stress and antioxidant status of pregnant women suffering from malaria in cameroon, Indian J. Clin. Biochem., 24 (3) (2009) 288–293.
DOI: 10.1007/s12291-009-0054-6
Google Scholar
[7]
U. Dibua and A. Kalu, P02 . 98 . Effect of selected plant extracts on haemozoin concentration in malaria patients,, BMC Complement. Altern. Med., vol. 12, no. Suppl 1, p. P154, 2012,.
DOI: 10.1186/1472-6882-12-s1-p154
Google Scholar
[8]
M. Leroux, V. Lakshmanan, and J. P. Daily, Plasmodium falciparum biology : analysis of in vitro versus in vivo growth conditions, Trends in Parasitol., 25 (10) (2009) 474-481.
DOI: 10.1016/j.pt.2009.07.005
Google Scholar
[9]
K. C. Obimba and C. S. Eziuzor, Comparative biochemical and hematological analyses of malaria patients and normal human subjects of the Federal Medical Centre Owerri, Nigeria,, Int. J. Med. Adv. Discov., 2 (1) (2015) 32–40.
Google Scholar
[10]
D. A. van Schalkwyk. R. Burrow, G. Henriques, N. B. Gadalla, K. B. Beshir, C. Hasford, S. G. Wright, X. C. Ding, P. L. Cjiodini, and C. J. Sutherland, Culture-adapted Plasmodium falciparum isolates from UK travellers: in vitro drug sensitivity, clonality and drug resistance markers, Malarial J., 12 (2013) 1-15.
DOI: 10.1186/1475-2875-12-320
Google Scholar
[11]
N. Amarachi, A. Christopher, and D. Ijeoma, Public Participation in Solid Waste Management Practices within Owerri Urban of Imo State, Nigeria, Int. J. Sci. Res., 5 (3) (2016) 1749–1754.
DOI: 10.21275/v5i3.nov162306
Google Scholar
[12]
Y. Ma, T. Lu, W. Zhao, Y. Wang, T. Chen, and Q. Mei, Enhanced Antimalarial Activity by a Novel Artemether-Lumefantrine Lipid Emulsion for Parenteral Administration, Antimicrob. Agents Chemother., 58 (10) (2014) 5658–5665.
DOI: 10.1128/aac.01428-13
Google Scholar
[13]
N. B. Quashie, N. O. Duah, B. Abuaku, L. Quaye, R. Ayanful-Torgby, G. A. Akwoviah, M. Kweku, J. D. Johnson, N. W. Lucchi, V. Udhayakumar, C. Duplessis, K. C. Kronmann and K. A. Koram, A SYBR Green 1-based in vitro test of susceptibility of Ghanaian Plasmodium falciparum clinical isolates to a panel of anti-malarial drugs, Malarial J. 12 (2013) 1–12.
DOI: 10.1186/1475-2875-12-450
Google Scholar
[14]
M. E. Khan, I. Toma, D. Y. Shingu, and C. H. Wazis, Antiplasmodial activity of the methanol extract of the roots of aristolochia albida in albino swiss mice, J. Biol. Sci. Bioconservation, 4 (2012) 26-38.
Google Scholar
[15]
N. R. Nwazue, O. Jacinta, and B. Wesley, In vivo antimalarial effects of ethanol and crude aqueous extracts of phyllantus amarus, 1 (4) (3013) 115–124.
Google Scholar
[16]
P. Rasoanaivo, C. W. Wright, M. L. Willcox, and B. Gilbert, Whole plant extracts versus single compounds for the treatment of malaria : synergy and positive interactions,, Malarial. J., 10 (2011) 1-4.
DOI: 10.1186/1475-2875-10-s1-s4
Google Scholar
[17]
C. Wongsrichanalai, T. Wimonwattrawatee, P. Sookto, A. Laoboonchai, D.G. Heppner, D.E. Kyle, and W.H. Wernsdorfer, In vitro sensitivity of Plasmodium falciparum to artesunate in Thailand, Bulletin of the World Health Organization, 77 (5) (1999) 392-398.
Google Scholar
[18]
M. S. Tucker, T. Mutka, K. Sparks, J. Patel, and D. E. Kyle, Phenotypic and Genotypic Analysis of In Vitro -Selected Artemisinin-Resistant Progeny of Plasmodium falciparum, Antimicrob. Agents Chemother. 56(1) (2012) 302-314.
DOI: 10.1128/aac.05540-11
Google Scholar
[19]
S. Sanon, A. Gansane, L. P. Ouattara, A. Traore, I. N. Ouedraogo, A. Tiono, D. Taramelli, N. Basilico, S. B. Sirima,,, In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso, African J. Lab. Med., 2(1) (2013) 1–7.
DOI: 10.4102/ajlm.v2i1.81
Google Scholar
[20]
M. J. Gardner, N. Hall, E. Fung, O. White, M. Berriman, R. W. Hyman, … B. G. Barrell, Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, 419 (6906) (2002) 498–511.
Google Scholar
[21]
N. Hall, A. Pain, M. Berriman, C. Churcher, B. Harris, D. Harris, … Barrell, B. G., Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13, Nature, 419 (6906) (2002) 527–531.
Google Scholar
[22]
D. W. Wilson, B. S. Crabb, and J. G. Beeson, Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays, Malarial J., 9 (2010) 1–12.
DOI: 10.1186/1475-2875-9-152
Google Scholar
[23]
K. K. Sha'a, S. Oguche, I. M. Watila, and T. F. Ikpa, In vitro antimalarial activity of the extracts of vernonia amygdalina commonly used in traditional medicine in Nigeria, Sci. World J., 6 (2) (2011) 5–9.
DOI: 10.9734/bpi/castr/v13/3081d
Google Scholar
[24]
C. Huthmacher, A. Hoppe, S. Bulik, and H.-G. Holzhutter, Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis.,, BMC Syst. Biol., vol. 4, p.120, 2010,.
DOI: 10.1186/1752-0509-4-120
Google Scholar
[25]
O. C. U. Adumanya, C. N. Osuji, G. A. Obi-Adumanya, and T. O. Akunna, Antiplasmodial effect of some medicinal plants ( picralima nitida and dialium guineense ,) and their combination with Artesunate, Hetero Group of Journal, Int J.A.PS.BMS, 2 (4) (2013) 189–194.
Google Scholar
[26]
O. P. C. Ugwu, O. F. C. Nwodo, P. E. Joshua, C. E. Odo, A. Bawa, E. C. Ossai, and C. C. Adonu, Anti-malaria and hematological analyses of ethanol leaf extract of moringa oleifera on malaria infected mice, Int. J. Pharm. Biol. Sci., 3(1) (2013) 360–371.
Google Scholar
[27]
O. B. Odeghe, A. A. Uwakwe, and C. C. Monago, Antiplasmodial Activity of Methanolic Stem Bark Extract of Anthocleista grandiflora in Mice, Int. J. Appl. Sci. Technol., 2 (4) (2012) 142–148.
Google Scholar
[28]
O. O. Omotosho, M. A. Adebiyi, and M. O. Oyeyemi, Comparative Study of the Haematology and Serum Biochemistry of Male Wistar Rats Treated with Chloroquine and Artesunate, J. Physiol. Pharmacol. Adv., 4 (8) (2014) 413–419.
DOI: 10.5455/jppa.20140827112119
Google Scholar
[29]
T. O. Azeez and A. T. Banigo, Phytochemical analysis of aqueous methanolic extract of acanthospermum hispidium and its effect on biochemical and hematological indices in plasmodium falciparum infected rats, African J. Biomed. Res., 21 (2) (2018) 183-192.
Google Scholar
[30]
C. NKWOCHA, Nutritional potential of synsepalum dulcificum pulp and the effectof the methanolic extract on some biochemical parameters in albino rats, University of Nigeria, Nsukka, Nigeria, (2014).
DOI: 10.12980/jclm.3.201514b136
Google Scholar
[31]
M. Kotepui, D. Piwkham, B. Phunphuech, and N. Phiwklam, Effects of Malaria Parasite Density on Blood Cell Parameters, Plos, 10 (3) (2015) 1–11.
DOI: 10.1371/journal.pone.0121057
Google Scholar
[32]
S. Al-Jassabi, M. S. Azirun, & A. Saad, Biochemical studies on the role of curcumin in the protection of liver and kidney by anti-malaria drug, chkoroquine. American-Eurasian J. Toxicol. Sci. 3(1) (2011) 17–22.
Google Scholar
[33]
J. Bero, V. Hannaert, G. Chataigné, and M. Hérent, In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract, J. Ethnopharmacol., 137 (2) (2011) 998–1002.
DOI: 10.1016/j.jep.2011.07.022
Google Scholar
[34]
M. Smiglak et al., Ionic liquids for energy, materials, and medicine, Chem. Commun., 50 (2014) 9228–9250.
Google Scholar
[35]
F. Amblard, V. Aucagne, P. Guenot, F. Schinazi, and L. A. Agrofoglio, Synthesis and antiviral activity of novel acyclic nucleosides in the 5-alkynyl- and 6-alkylfuro [ 2 , 3- d ] pyrimidine series, Bioorg. Med. Chem., 13 (2005) 1239–1248.
DOI: 10.1016/j.bmc.2004.11.057
Google Scholar
[36]
E. K. Ahmed, M. A. Ameen, and F. F. Abdel-latif, Microwave-Assisted Synthesis of Novel Imidazo- and Pyrimidopyrido [4 , 3 ,: 4 , 5] thieno [2 , 3- d] pyrimidines, Z. Naturforsch, 60 (2005) 221 – 226.
DOI: 10.1515/znb-2005-0216
Google Scholar
[37]
K. S. Egorova, E. G. Gordeev, and V. P. Ananikov, Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine, Chem. Rev., 117 (2017) 7132–7189.
DOI: 10.1021/acs.chemrev.6b00562
Google Scholar
[38]
M. M. A. Salman and R. A. Randa, Patho-physiological studies on the Reverse Effect of Curcumin ( Curcuma longa , Zingiberaceae ) and Ursofalk ( Ursodeoxycholic acid ) against the Toxicity of Carbon Tetrachloride on Albino Rats, J. Liver, 5(3) (2016) 1–7.
DOI: 10.4172/2167-0889.1000200
Google Scholar
[39]
S. Rollas and Ş. G. Küçükgüzel, Biological activities of hydrazone derivatives, Molecules, 12 (8) (2007) 1910–(1939).
DOI: 10.3390/12081910
Google Scholar
[40]
J. H. Doughari, Phytochemicals : Extraction Methods , Basic Structures and Mode of Action as Potential Chemotherapeutic Agents, D. V. Rao (Eds), A Global Perspective of Their Role in Nutrition and Health, InTech, Croatia, 2009, p.1–33.
DOI: 10.5772/26052
Google Scholar
[41]
O. O. Omotosho, M. A. Adebiyi, and O. M. Oyeyemi, Comparative Study of the Haematology and Serum Biochemistry of Male Wistar Rats Treated with Chloroquine Comparative Study of the Haematology and Serum Biochemistry of Male Wistar Rats Treated with Chloroquine and Artesunate,, J. Physiol. Pharmacol. Adv., 4 (8) (2014) 413–419.
DOI: 10.5455/jppa.20140827112119
Google Scholar
[42]
R. Fegas, A. Bensalem, Z. Bettache, and M. Righezza, Simultaneous Separation of Quinine and Its Diastereoisomer Quinidine by RP-HPLC, Asian J. Chem., 22 (2) (2010) 1587–1590.
Google Scholar
[43]
J. O. Akaninwor, E. . Essien, P. . Chikezie, and R. . Okpara, Haematologic and Biochemical Indices of Plasmodiumfalciparum Infected Inhabitants of Owerri, Imo State, Nigeria, Glob. J. Med. Res. Dis., 13 (4) (2013) 20–282.
DOI: 10.5897/jmld2013-0068
Google Scholar