[1]
E. C. Teo and H. W. Ng, Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method,, Med. Eng. Phys., vol. 23, no. 3, p.155–164, 2001,.
DOI: 10.1016/s1350-4533(01)00036-4
Google Scholar
[2]
Cédric Barrey. Evaluation biomécanique d'une prothèse discale cervicale : analyses in vitro et in vivo. Biomécanique [physics.med-ph]. Arts et Métiers ParisTech, 2011. Français. ⟨NNT : 2010ENAM0009⟩. ⟨pastel-00584788⟩.
Google Scholar
[3]
A. Moussa, A. Hacene, and M. Hammoudi, Numerical Shape Optimization of Cervical Spine Disc Prosthesis,, vol. 36, p.56–69, 2018,.
Google Scholar
[4]
B. W. Cunningham, Basic scientific considerations in total disc arthroplasty,, Spine J., vol. 4, no. 6 SUPPL., pp. S219–S230, 2004,.
DOI: 10.1016/j.spinee.2004.07.015
Google Scholar
[5]
F. Heuer, H. Schmidt, W. Käfer, N. Graf, and H. J. Wilke, Posterior motion preserving implants evaluated by means of intervertebral disc bulging and annular fiber strains,, Clin. Biomech., vol. 27, no. 3, p.218–225, 2012,.
DOI: 10.1016/j.clinbiomech.2011.09.004
Google Scholar
[6]
S. Goyal, T. Tandon, and D. Sangoi, Total Joint Replacement, General Principles of Orthopedics and Trauma. , p.429–489, 2019,.
DOI: 10.1007/978-3-030-15089-1_20
Google Scholar
[7]
S. Taksali, J. N. Grauer, and A. R. Vaccaro, Material considerations for intervertebral disc replacement implants,, Spine J., vol. 4, no. 6 SUPPL., pp. S231–S238, 2004,.
DOI: 10.1016/j.spinee.2004.07.012
Google Scholar
[8]
E. C. Benzel, I. H. Lieberman, and E. R. Ross, Mechanical Characterization of a Viscoelastic Disc for Lumbar,, vol. 5, no. March 2011, p.1–7, 2017,.
Google Scholar
[9]
M. Muhlbauer, E. Tomasch, W. Sinz, S. Trattnig, and H. Steffan, Correction to: In cervical arthroplasty, only prosthesis with flexible biomechanical properties should be used for achieving a near-physiological motion pattern (Journal of Orthopaedic Surgery and Research, (2020), 15, 1, (391), 10.1186/s13018-020-01908-y),, J. Orthop. Surg. Res., vol. 15, no. 1, p.1–14, 2020,.
DOI: 10.1186/s13018-020-02110-w
Google Scholar
[10]
H. Choi, Y. Purushothaman, J. Baisden, and N. Yoganandan, Unique biomechanical signatures of Bryan, Prodisc C, and Prestige LP cervical disc replacements: a finite element modelling study,, Eur. Spine J., vol. 29, no. 11, p.2631–2639, 2020,.
DOI: 10.1007/s00586-019-06113-y
Google Scholar
[11]
C. Zhou, R. Willing, C. Zhou, R. Willing, R. Willing, and T. E. Building, Development of a Biconcave Mobile-Bearing Lumbar Total Disc Arthroplasty Concept Using Finite Element Analysis and Design Optimization,, p.0–2,.
DOI: 10.1002/jor.24315
Google Scholar
[12]
June Ho Lee;Won Man;Yoon Hyuk Kim, SPINE An International Journal for the study of the spine Publish Ahead of Print DOI : 10.1097/BRS.0000000000002151,, Spine (Phila. Pa. 1976)., vol. 41, no. 15, p. p E893-E901, 2017,.
Google Scholar
[13]
C. Y. Lin, H. Kang, J. P. Rouleau, S. J. Hollister, and F. La Marca, Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: An in vivo image-based finite element study,, Spine (Phila. Pa. 1976)., vol. 34, no. 15, p.1554–1560, 2009,.
DOI: 10.1097/brs.0b013e3181aa643b
Google Scholar
[14]
S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,, Mater. Sci. Eng. C, vol. 68, p.948–963, 2016,.
DOI: 10.1016/j.msec.2016.06.020
Google Scholar
[15]
M. Niinomi, M. Nakai, and J. Hieda, Development of new metallic alloys for biomedical applications,, Acta Biomater., vol. 8, no. 11, p.3888–3903, 2012,.
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[16]
H. A. Zaman, S. Sharif, M. H. Idris, and A. Kamarudin, Metallic Biomaterials for Medical Implant Applications: A Review,, Appl. Mech. Mater., vol. 735, p.19–25, 2015,.
DOI: 10.4028/www.scientific.net/amm.735.19
Google Scholar
[17]
M. Niinomi and M. Nakai, Titanium-based biomaterials for preventing stress shielding between implant devices and bone,, Int. J. Biomater., vol. 2011, 2011,.
DOI: 10.1155/2011/836587
Google Scholar
[18]
A. S. V. A. Eremeyev, APPLICATION OF THE MICROPOLAR THEORY TO THE STRENGTH ANALYSIS,, Strength Mater., vol. 48, no. 4, p.119–128, 2016,.
Google Scholar
[19]
D. Granchi, L. M. Savarino, G. Ciapetti, and N. Baldini, Biological effects of metal degradation in hip arthroplasties,, Crit. Rev. Toxicol., vol. 48, no. 2, p.170–193, 2018,.
DOI: 10.1080/10408444.2017.1392927
Google Scholar
[20]
M. Merola and S. Affatato, Materials for hip prostheses: A review of wear and loading considerations,, Materials (Basel)., vol. 12, no. 3, 2019,.
DOI: 10.3390/ma12030495
Google Scholar
[21]
K. N. Chethan, Z. Mohammad, N. Shyamasunder Bhat, and B. Satish Shenoy, Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis,, Cogent Eng., vol. 7, no. 1, 2020,.
DOI: 10.1080/23311916.2020.1719575
Google Scholar
[22]
A. M. Saviano and F. R. Lourenço, Design of Experiments ( DoE ) applied to Pharmaceutical and Analytical Quality by Design ( QbD ),, p.1–16, 2015,.
Google Scholar
[23]
H. F. Wagner, J. R., Mount, E. M., & Giles, Design of Factorial Experiments,, Extrusion, p.291–308, 2014,.
Google Scholar
[24]
J. M. Vital and L. Boissière, Total disc replacement,, Orthop. Traumatol. Surg. Res., vol. 100, no. 1 S, p. S1, 2014,.
Google Scholar
[25]
Sientra/FDA, Summary of Safety and Effectiveness Data ( Ssed ),, U.S. Food Drug Adm., p.39, 2011, [Online]. Available: http://www.accessdata.fda.gov/cdrh_docs/pdf10/P100034b.pdf.
Google Scholar
[26]
Z. Mo, Y. Zhao, C. Du, Y. Sun, and M. Zhang, Does Location of Rotation Center in Arti fi cial Disc,, vol. 40, no. 8, p.469–476, 2015,.
Google Scholar
[27]
M. Pham, K. Phan, I. Teng, and R. J. Mobbs, Comparative Study Between M6-C and Mobi-C Cervical Arti fi cial Disc Replacement : Biomechanical Outcomes and Comparison with Normative Data,, no. February 2017, p.84–88, 2018,.
DOI: 10.1111/os.12376
Google Scholar
[28]
M. S. Hisey et al., Multi-center, prospective, randomized, controlled investigational device exemption clinical trial comparing mobi-C cervical artificial disc to anterior discectomy and fusion in the treatment of symptomatic degenerative disc disease in the cervical spine,, Int. J. Spine Surg., vol. 8, no. April, 2014,.
DOI: 10.14444/1007
Google Scholar
[29]
P. Yang Li, PhD1, Guy R. Fogel2, Zhenhua Liao, PhD1, Rajnesh Tyagi, PhD3, Gaolong Zhang, PhD1, Weiqiang Liu, Biomechanical Analysis of Two-level Cervical Disc Replacement with a Stand-alone U-shaped Disc Implant,, Spine (Phila. Pa. 1976)., p.25, 2017,.
DOI: 10.1097/brs.0000000000002128
Google Scholar
[30]
Y. M. Xie, Y. C. Zheng, S. J. Qiu, K. Q. Gong, and Y. Duan, The appropriate hybrid surgical strategy in three-level cervical degenerative disc disease : a finite element analysis,, vol. 5, p.1–10, 2019,.
DOI: 10.1186/s13018-019-1502-5
Google Scholar
[31]
C. K N, G. Ogulcan, S. Bhat N, M. Zuber, and S. Shenoy B, Wear estimation of trapezoidal and circular shaped hip implants along with varying taper trunnion radiuses using finite element method,, Comput. Methods Programs Biomed., vol. 196, p.105597, 2020,.
DOI: 10.1016/j.cmpb.2020.105597
Google Scholar
[32]
K. N. Chethan, N. Shyamasunder Bhat, M. Zuber, and B. Satish Shenoy, Finite element analysis of different hip implant designs along with femur under static loading conditions,, J. Biomed. Phys. Eng., vol. 9, no. 5, p.507–516, 2019,.
DOI: 10.31661/jbpe.v0i0.1210
Google Scholar
[33]
Z. J. Mo, Y. Bin Zhao, L. Z. Wang, Y. Sun, M. Zhang, and Y. B. Fan, Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue,, Eur. Spine J., vol. 23, no. 3, p.613–621, 2014,.
DOI: 10.1007/s00586-013-3070-4
Google Scholar
[34]
S. Lee, Y. Im, K. Kim, and Y. Kim, Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Arti fi cial Disc,, vol. 36, no. 9, p.700–708, 2011,.
DOI: 10.1097/brs.0b013e3181f5cb87
Google Scholar