Numerical Size Optimization of Cervical Spine Disc Prosthesis Mobi-C Using Design of Experiment Technics

Article Preview

Abstract:

The cervical spine is a structure subject to various vertebral injuries, namely, herniation of intervertebral discs and osteoporosis. Nowadays, several segments of society are vulnerable to these diseases that affect spine motion especially elderly people and women. Hence, various designs of cervical artificial discs are in use or under investigation claiming to restore the normal kinematics of the cervical spine. In this work, it is proposed to minimize the stress level by numerical size optimization in the Mobi-C cervical spine prosthesis to improve their biomechanical performances. For this aim, design of experiment (DoE) is employed as an optimization technique to investigate three geometrical parameters of the prosthesis design. Accordingly, DoE optimization allowed to minimize the equivalent stress value on Mobi-C from 20.3 MPa to 17.856 MPa corresponding to a percentage decrease of 12% from the original geometry. This provides an advantage for the durability of the prosthesis and also for the bone by reducing stress concentration.

You might also be interested in these eBooks

Info:

Pages:

173-188

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. C. Teo and H. W. Ng, Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method,, Med. Eng. Phys., vol. 23, no. 3, p.155–164, 2001,.

DOI: 10.1016/s1350-4533(01)00036-4

Google Scholar

[2] Cédric Barrey. Evaluation biomécanique d'une prothèse discale cervicale : analyses in vitro et in vivo. Biomécanique [physics.med-ph]. Arts et Métiers ParisTech, 2011. Français. ⟨NNT : 2010ENAM0009⟩. ⟨pastel-00584788⟩.

Google Scholar

[3] A. Moussa, A. Hacene, and M. Hammoudi, Numerical Shape Optimization of Cervical Spine Disc Prosthesis,, vol. 36, p.56–69, 2018,.

Google Scholar

[4] B. W. Cunningham, Basic scientific considerations in total disc arthroplasty,, Spine J., vol. 4, no. 6 SUPPL., pp. S219–S230, 2004,.

DOI: 10.1016/j.spinee.2004.07.015

Google Scholar

[5] F. Heuer, H. Schmidt, W. Käfer, N. Graf, and H. J. Wilke, Posterior motion preserving implants evaluated by means of intervertebral disc bulging and annular fiber strains,, Clin. Biomech., vol. 27, no. 3, p.218–225, 2012,.

DOI: 10.1016/j.clinbiomech.2011.09.004

Google Scholar

[6] S. Goyal, T. Tandon, and D. Sangoi, Total Joint Replacement, General Principles of Orthopedics and Trauma. , p.429–489, 2019,.

DOI: 10.1007/978-3-030-15089-1_20

Google Scholar

[7] S. Taksali, J. N. Grauer, and A. R. Vaccaro, Material considerations for intervertebral disc replacement implants,, Spine J., vol. 4, no. 6 SUPPL., pp. S231–S238, 2004,.

DOI: 10.1016/j.spinee.2004.07.012

Google Scholar

[8] E. C. Benzel, I. H. Lieberman, and E. R. Ross, Mechanical Characterization of a Viscoelastic Disc for Lumbar,, vol. 5, no. March 2011, p.1–7, 2017,.

Google Scholar

[9] M. Muhlbauer, E. Tomasch, W. Sinz, S. Trattnig, and H. Steffan, Correction to: In cervical arthroplasty, only prosthesis with flexible biomechanical properties should be used for achieving a near-physiological motion pattern (Journal of Orthopaedic Surgery and Research, (2020), 15, 1, (391), 10.1186/s13018-020-01908-y),, J. Orthop. Surg. Res., vol. 15, no. 1, p.1–14, 2020,.

DOI: 10.1186/s13018-020-02110-w

Google Scholar

[10] H. Choi, Y. Purushothaman, J. Baisden, and N. Yoganandan, Unique biomechanical signatures of Bryan, Prodisc C, and Prestige LP cervical disc replacements: a finite element modelling study,, Eur. Spine J., vol. 29, no. 11, p.2631–2639, 2020,.

DOI: 10.1007/s00586-019-06113-y

Google Scholar

[11] C. Zhou, R. Willing, C. Zhou, R. Willing, R. Willing, and T. E. Building, Development of a Biconcave Mobile-Bearing Lumbar Total Disc Arthroplasty Concept Using Finite Element Analysis and Design Optimization,, p.0–2,.

DOI: 10.1002/jor.24315

Google Scholar

[12] June Ho Lee;Won Man;Yoon Hyuk Kim, SPINE An International Journal for the study of the spine Publish Ahead of Print DOI : 10.1097/BRS.0000000000002151,, Spine (Phila. Pa. 1976)., vol. 41, no. 15, p. p E893-E901, 2017,.

Google Scholar

[13] C. Y. Lin, H. Kang, J. P. Rouleau, S. J. Hollister, and F. La Marca, Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: An in vivo image-based finite element study,, Spine (Phila. Pa. 1976)., vol. 34, no. 15, p.1554–1560, 2009,.

DOI: 10.1097/brs.0b013e3181aa643b

Google Scholar

[14] S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,, Mater. Sci. Eng. C, vol. 68, p.948–963, 2016,.

DOI: 10.1016/j.msec.2016.06.020

Google Scholar

[15] M. Niinomi, M. Nakai, and J. Hieda, Development of new metallic alloys for biomedical applications,, Acta Biomater., vol. 8, no. 11, p.3888–3903, 2012,.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[16] H. A. Zaman, S. Sharif, M. H. Idris, and A. Kamarudin, Metallic Biomaterials for Medical Implant Applications: A Review,, Appl. Mech. Mater., vol. 735, p.19–25, 2015,.

DOI: 10.4028/www.scientific.net/amm.735.19

Google Scholar

[17] M. Niinomi and M. Nakai, Titanium-based biomaterials for preventing stress shielding between implant devices and bone,, Int. J. Biomater., vol. 2011, 2011,.

DOI: 10.1155/2011/836587

Google Scholar

[18] A. S. V. A. Eremeyev, APPLICATION OF THE MICROPOLAR THEORY TO THE STRENGTH ANALYSIS,, Strength Mater., vol. 48, no. 4, p.119–128, 2016,.

Google Scholar

[19] D. Granchi, L. M. Savarino, G. Ciapetti, and N. Baldini, Biological effects of metal degradation in hip arthroplasties,, Crit. Rev. Toxicol., vol. 48, no. 2, p.170–193, 2018,.

DOI: 10.1080/10408444.2017.1392927

Google Scholar

[20] M. Merola and S. Affatato, Materials for hip prostheses: A review of wear and loading considerations,, Materials (Basel)., vol. 12, no. 3, 2019,.

DOI: 10.3390/ma12030495

Google Scholar

[21] K. N. Chethan, Z. Mohammad, N. Shyamasunder Bhat, and B. Satish Shenoy, Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis,, Cogent Eng., vol. 7, no. 1, 2020,.

DOI: 10.1080/23311916.2020.1719575

Google Scholar

[22] A. M. Saviano and F. R. Lourenço, Design of Experiments ( DoE ) applied to Pharmaceutical and Analytical Quality by Design ( QbD ),, p.1–16, 2015,.

Google Scholar

[23] H. F. Wagner, J. R., Mount, E. M., & Giles, Design of Factorial Experiments,, Extrusion, p.291–308, 2014,.

Google Scholar

[24] J. M. Vital and L. Boissière, Total disc replacement,, Orthop. Traumatol. Surg. Res., vol. 100, no. 1 S, p. S1, 2014,.

Google Scholar

[25] Sientra/FDA, Summary of Safety and Effectiveness Data ( Ssed ),, U.S. Food Drug Adm., p.39, 2011, [Online]. Available: http://www.accessdata.fda.gov/cdrh_docs/pdf10/P100034b.pdf.

Google Scholar

[26] Z. Mo, Y. Zhao, C. Du, Y. Sun, and M. Zhang, Does Location of Rotation Center in Arti fi cial Disc,, vol. 40, no. 8, p.469–476, 2015,.

Google Scholar

[27] M. Pham, K. Phan, I. Teng, and R. J. Mobbs, Comparative Study Between M6-C and Mobi-C Cervical Arti fi cial Disc Replacement : Biomechanical Outcomes and Comparison with Normative Data,, no. February 2017, p.84–88, 2018,.

DOI: 10.1111/os.12376

Google Scholar

[28] M. S. Hisey et al., Multi-center, prospective, randomized, controlled investigational device exemption clinical trial comparing mobi-C cervical artificial disc to anterior discectomy and fusion in the treatment of symptomatic degenerative disc disease in the cervical spine,, Int. J. Spine Surg., vol. 8, no. April, 2014,.

DOI: 10.14444/1007

Google Scholar

[29] P. Yang Li, PhD1, Guy R. Fogel2, Zhenhua Liao, PhD1, Rajnesh Tyagi, PhD3, Gaolong Zhang, PhD1, Weiqiang Liu, Biomechanical Analysis of Two-level Cervical Disc Replacement with a Stand-alone U-shaped Disc Implant,, Spine (Phila. Pa. 1976)., p.25, 2017,.

DOI: 10.1097/brs.0000000000002128

Google Scholar

[30] Y. M. Xie, Y. C. Zheng, S. J. Qiu, K. Q. Gong, and Y. Duan, The appropriate hybrid surgical strategy in three-level cervical degenerative disc disease : a finite element analysis,, vol. 5, p.1–10, 2019,.

DOI: 10.1186/s13018-019-1502-5

Google Scholar

[31] C. K N, G. Ogulcan, S. Bhat N, M. Zuber, and S. Shenoy B, Wear estimation of trapezoidal and circular shaped hip implants along with varying taper trunnion radiuses using finite element method,, Comput. Methods Programs Biomed., vol. 196, p.105597, 2020,.

DOI: 10.1016/j.cmpb.2020.105597

Google Scholar

[32] K. N. Chethan, N. Shyamasunder Bhat, M. Zuber, and B. Satish Shenoy, Finite element analysis of different hip implant designs along with femur under static loading conditions,, J. Biomed. Phys. Eng., vol. 9, no. 5, p.507–516, 2019,.

DOI: 10.31661/jbpe.v0i0.1210

Google Scholar

[33] Z. J. Mo, Y. Bin Zhao, L. Z. Wang, Y. Sun, M. Zhang, and Y. B. Fan, Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue,, Eur. Spine J., vol. 23, no. 3, p.613–621, 2014,.

DOI: 10.1007/s00586-013-3070-4

Google Scholar

[34] S. Lee, Y. Im, K. Kim, and Y. Kim, Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Arti fi cial Disc,, vol. 36, no. 9, p.700–708, 2011,.

DOI: 10.1097/brs.0b013e3181f5cb87

Google Scholar