[1]
J.M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol 13 (2015) 42-51.
DOI: 10.1038/nrmicro3380
Google Scholar
[2]
M.K. Rai, S.D. Deshmukh, A.P. Ingle, A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria, J. Appl. Microbiol 112 (2012) 841-852.
DOI: 10.1111/j.1365-2672.2012.05253.x
Google Scholar
[3]
A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity, RSC Adv. 9 (2019) 2673-2702.
DOI: 10.1039/c8ra08982e
Google Scholar
[4]
J.N. Kabera, E. Semana, A.R. Mussa, X. He, Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties, J. Pharm. Pharmacol. 2 (2014) 377-392.
Google Scholar
[5]
A. Agarwal, S.V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach, Resource-Efficient Technologies 3 (2017) 406-413.
DOI: 10.1016/j.reffit.2017.03.002
Google Scholar
[6]
S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, J. Adv. Res. 7 (2016) 17-28.
DOI: 10.1016/j.jare.2015.02.007
Google Scholar
[7]
M. Rafique, I. Sadaf, M.S. Rafique, M.B. Tahir, A review on green synthesis of silver nanoparticles and their applications, Artif. Cells Nanomed. Biotechnol. 45 (2017) 1272-1291.
DOI: 10.1080/21691401.2016.1241792
Google Scholar
[8]
J. Loma Abaas, A.A. Hameed, M.A. Al-Heety, A.R. Mahmood, A. Karadağ, H. Akbaş, The mixture of silver nanosquare and silver nanohexagon: green synthesis, characterization and kinetic evolution, Mater. Res. Express. 6 (2019) 1-8.
DOI: 10.1088/2053-1591/ab27f3
Google Scholar
[9]
M.A. Odeniyi, V.C. Okumah, B.C. Adebayo-Tayo, O.A. Odeniyi, Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities, Sustain. Chem. Pharm. 15 (2020) 100197.
DOI: 10.1016/j.scp.2019.100197
Google Scholar
[10]
B.D. Salih, A.H. Ali, M.A. Alheety, A.R. Mahmood, A. Karadağ, A. Aydın, Biosynthesis of Ag nanospheres using waste phoenix dactylifera argonne: a prospective anticancer and antibacterial, Mater. Res. Express. 6 (2019) 1-11.
DOI: 10.1088/2053-1591/ab3bad
Google Scholar
[11]
M. Kikowska, M. Dworacka, I. Kędziora, B. Thiem, Eryngium creticum – ethnopharmacology, phytochemistry and pharmacological activity. A review, Rev. Bras. Farmacogn. 26 (2106) 392-399.
DOI: 10.1016/j.bjp.2016.01.008
Google Scholar
[12]
R.D.H. Murray, Naturally occurring plant coumarins. Fortschritte der Chemie organischer Naturstoffe (Progress in the chemistry of organic natural products), Springer, Vienna, 1991, pp.83-316.
DOI: 10.1007/978-3-7091-9141-5_2
Google Scholar
[13]
U.W. Hawas, L.T. El-Kassem, H.M. Awad, H.A. Taie, Anti-Alzheimer, Antioxidant Activities and Flavonol Glycosides of Eryngium campestre L, Curr. Chem. Biol. 7 (2013) 188-195.
DOI: 10.2174/2212796811307020010
Google Scholar
[14]
P. Wang, Z. Su, W. Yuan, G. Deng, S. Li, Phytochemical constituents and pharmacological activities of Eryngium L.(Apiaceae), Pharmaceutical Crops 3 (2012) 99-120.
DOI: 10.2174/2210290601203010099
Google Scholar
[15]
C.W. Choi, S.C. Kim, S.S. Hwang, B.K. Choi, H.J. Ahn, M.Y. Lee, S.H. Park, S.K. Kim, Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison, Plant Sci. 163 (2002) 1161-1168.
DOI: 10.1016/s0168-9452(02)00332-1
Google Scholar
[16]
Meda, C.E. Lamien, M. Romito, J. Millogo, O.G. Nacoulma, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity, Food Chem. 91 (2005) 571-577.
DOI: 10.1016/j.foodchem.2004.10.006
Google Scholar
[17]
C. Quettier-Deleu, B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J.C. Cazin, F. Bailleul, F. Trotin, Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour, J. Ethnopharmacol. 72 (2000) 35-42.
DOI: 10.1016/s0378-8741(00)00196-3
Google Scholar
[18]
J.H. Jorgensen, J.D. Turnidge, Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology, Eleventh Edition, ASM Press, Washington, 2015, pp.1253-1273.
DOI: 10.1128/9781555817381.ch71
Google Scholar
[19]
B. Thiem, O. Goslinska, M. Kikowska, J. Budzianowski, Antimicrobial activity of three Eryngium L. species (Apiaceae), Herba. polonica 56 (2010) 52-59.
DOI: 10.1515/hepo-2016-0012
Google Scholar
[20]
G. Brunner, Hydrothermal and supercritical water processes, Burlington: Elsevier Science, Amsterdam, 2014, pp.2-666.
Google Scholar
[21]
Sereewatthanawut, S. Prapintip, K. Watchiraruji, M. Goto, M. Sasaki, A. Shotipruk, Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis, Bioresour. Technol. 99 (2008) 555-561.
DOI: 10.1016/j.biortech.2006.12.030
Google Scholar
[22]
D. MubarakAli, N. Thajuddin, K. Jeganathan, M. Gunasekaran, Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloid. Surface. B. 85 (2011) 360-365.
DOI: 10.1016/j.colsurfb.2011.03.009
Google Scholar
[23]
F. Khan, M.U. Hashmi, N. Khalid, M.Q. Hayat, A. Ikram, H.A. Janjua, Controlled assembly of silver nano-fluid in Heliotropium crispum extract: a potent anti-biofilm and bactericidal formulation, Appl. Surf. Sci. 387 (2016) 317-331.
DOI: 10.1016/j.apsusc.2016.05.133
Google Scholar
[24]
S. Roy, S. Shankar, J.W. Rhim, Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films, Food Hydrocoll. 88 (2019) 237-246.
DOI: 10.1016/j.foodhyd.2018.10.013
Google Scholar
[25]
F.K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, M. Lin, Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities, Colloids Surf B Biointerfaces. 171 (2018) 398-405.
DOI: 10.1016/j.colsurfb.2018.07.059
Google Scholar
[26]
G.M. Sangaonkar, K.D. Pawar, Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities, Colloids Surf B Biointerfaces 164 (2018) 210-217.
DOI: 10.1016/j.colsurfb.2018.01.044
Google Scholar
[27]
E.C. Vreeland, J. Watt, G.B. Schober, B.G. Hance, M.J. Austin, A.D. Price, B.D. Fellows, T.C. Monson, N.S. Hudak, L. Maldonado-Camargo, A.C. Bohorquez, C. Rinaldi, D.L. Huber, Enhanced nanoparticle size control by extending LaMer's mechanism, Chem. Mater. 27 (2015) 6059-6066.
DOI: 10.1021/acs.chemmater.5b02510
Google Scholar
[28]
B. Kumar, K. Smita, R. Seqqat, K. Benalcazar, M. Grijalva, L. Cumbal, In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application, J. Photoche. Photobiol. B. 159 (2016) 8-13. DOI: 10.101 6/j.jphotobiol.2016.03.011.
DOI: 10.1016/j.jphotobiol.2016.03.011
Google Scholar
[29]
V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid. Interfac. 145(2009) 83-96.
DOI: 10.1016/j.cis.2008.09.002
Google Scholar
[30]
B. Soumia, Eryngium campestre L.: Polyphenolic and Flavonoid Compounds; Applications to Health and Disease, Academic Press, United States, 2018, pp.69-79.
DOI: 10.1016/b978-0-12-813006-3.00007-6
Google Scholar
[31]
D. Li, Z. Liu, Y. Yuan, Y. Liu, F. Niu, Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells, Process Biochem. 50 (2015) 357-366.
DOI: 10.1016/j.procbio.2015.01.002
Google Scholar
[32]
J. Park, S.H. Cha, S. Cho, Y. Park, Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction, J. Nanopart. Res. 18 (2016) 166.
DOI: 10.1007/s11051-016-3466-2
Google Scholar
[33]
G. Seltmann, O. Holst, The bacterial cell wall, Springer-Verlag Berlin Heidelberg, Berlin, 2013.
Google Scholar
[34]
Mai-Prochnow, M. Clauson, J. Hong, A.B. Murphy, Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma, Sci. Rep. 6 (2016) 38610.
DOI: 10.1038/srep38610
Google Scholar
[35]
N. Durán, M. Durán, M.B. DeJesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomed-Nanotechnol 12 (2016) 789-799.
DOI: 10.1016/j.nano.2015.11.016
Google Scholar
[36]
N.A. Jaradat, Novel serial extraction method for antibacterial and antifungal evaluations of the entire Eryngium campestre L. plant from Jerusalem/Palestine, J. Chem. Pharm. 7 (2015) 905-913.
Google Scholar
[37]
Ihsan, T.Y. Qiang, N. Ilahi, M. Adnan, W. Sajjad, Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens, Int. J. Biosci. 13 (2018) 1-5.
DOI: 10.12692/ijb/13.5.113-127
Google Scholar
[38]
K. Faria, M.U. Hashmi, N. Khalid, M.Q. Hayat, A. Ikram, H.A. Janjua, Controlled assembly of silver nano-fluid in Heliotropium crispum extract: a potent anti-biofilm and bactericidal formulation, Appl. Surf. Sci. 387 (2016) 317-331.
DOI: 10.1016/j.apsusc.2016.05.133
Google Scholar
[39]
A.I. Mekkawy I, M.A. El-Mokhtar, N.A. Nafady, N. Yousef, M.A. Hamad, S.M. El-Shanawany, E.H. Ibrahim, M., Elsabahy, In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels, Int. J. Nanomedicine 12 (2017) 759-777.
DOI: 10.2147/ijn.s124294
Google Scholar
[40]
M.A. Ansari, M.A. Alzohairy, One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA, Evid. Based Complementary Altern. Med. 2018 (2018) 1-9.
DOI: 10.1155/2018/1860280
Google Scholar
[41]
K. Muthupandi, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi, Z.K. Shinwari, Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients, J. Interdiscip. Nanomed. 2 (2017) 131-141.
DOI: 10.1002/jin2.26
Google Scholar
[42]
M.A. Raza, Z. Kanwal, A. Rauf, A.N. Sabri, S. Riaz, S. Naseem, Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes, J. Nanomater. 6 (2016) 74.
DOI: 10.3390/nano6040074
Google Scholar
[43]
L. Kvítek, A. Panáček, J. Soukupova, M. Kolář, R. Večeřová, R. Prucek, M. Holecov-Aacute, R. Zbořil, Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs), J. Phys. Chem. C. 112 (2008) 5825-5834.
DOI: 10.1021/jp711616v
Google Scholar
[44]
S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73(2007) 1712-1720.
DOI: 10.1128/aem.02218-06
Google Scholar
[45]
J.J. Vijaya, N. Jayaprakash, K. Kombaiah, K. Kaviyarasu, L.J. Kennedy, R.J. Ramalingam, H.A. AlLohedan, M.A.V. Mohammed, M. Maaza, Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: antibacterial studies, J. Photoch. Photobio. B. 177 (2017) 62-68.
DOI: 10.1016/j.jphotobiol.2017.10.007
Google Scholar
[46]
S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions, Chem. Mater. 22 (2010) 4548-4554.
DOI: 10.1021/cm100023p
Google Scholar
[47]
M. Gomathi, P.V. Rajkumar, A. Prakasam, Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparticles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity, Results Phys. 10 (2018) 858-864.
DOI: 10.1016/j.rinp.2018.08.011
Google Scholar
[48]
S.G. Sparg, M.E. Light, J. Van Staden, Biological activities and distribution of plant saponins, J. Ethnopharmacol, 94 (2004) 219-243.
DOI: 10.1016/j.jep.2004.05.016
Google Scholar
[49]
M. Petersen, M.S. Simmonds, Rosmarinic acid, Phytochemistry 62 (2003) 121-125.
Google Scholar
[50]
S.A. Erdem, S.F. Nabavi, I.E. Orhan, M. Daglia, M. Izadi, S.M. Nabavi, Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium, DARU 23(2015) 53-75.
DOI: 10.1186/s40199-015-0136-3
Google Scholar
[51]
V. Ahluwalia, S. Elumalai, V. Kumar, S. Kumar, R.S. Sangwan, Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity, Microb. Pathog. 114 (2017) 402-408.
DOI: 10.1016/j.micpath.2017.11.052
Google Scholar