Eryngo Extract-Mediated Green Synthesis of Silver Nanoparticles and its Antibacterial Activity against Resistance Strains

Article Preview

Abstract:

In the present study, a simple and fast approach was developed for the green synthesis of silver nanoparticles by using Eryngium campestre (Eryngo) extract prepared in boiling water. People have widely used the Eryngo plant as a vegetable, food, and medicine around the world. The dried leaves of Eryngo extracted in boiling water yielded approximately 67 mg/g (6.6%) solid residue. The extract had a high antioxidant activity of 71 %, which was rich in total phenolic and flavonoids as revealed through colorimetric assays. For preparing nanoparticles, silver nitrate was added to the plant extract diluents and kept until the solution color changed with a sharp indicative peak of AgNPs that appeared at 450 nm. In addition, UV/Vis, TEM, FESEM, DLS, EDS, and XRD analysis were used to characterize the as-synthesized AgNPs. The results confirmed the spherical shape and nano nature of AgNPs with an average size of 32 nm based on Fe-SEM and TEM observations. The prepared AgNPs also shown moderate free radical scavenging activity (60%) in DPPH test and exhibit antibacterial activity at low concentration (50 μg/mL) toward both gram-positive and gram-negative bacteria. In this respect, the inhibition zone was higher in gram-positive bacteria and the sensitivity order of S.aureus > MRSA > B.subtilis > P.aeruginosa > E.coli was achieved in response to Eryngo AgNPs. Interestingly, Eryngo AgNPs at low concentration were efficient on MRSA, as an antibiotic-resistant strain of S.aureus.

You might also be interested in these eBooks

Info:

Pages:

61-73

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol 13 (2015) 42-51.

DOI: 10.1038/nrmicro3380

Google Scholar

[2] M.K. Rai, S.D. Deshmukh, A.P. Ingle, A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria, J. Appl. Microbiol 112 (2012) 841-852.

DOI: 10.1111/j.1365-2672.2012.05253.x

Google Scholar

[3] A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity, RSC Adv. 9 (2019) 2673-2702.

DOI: 10.1039/c8ra08982e

Google Scholar

[4] J.N. Kabera, E. Semana, A.R. Mussa, X. He, Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties, J. Pharm. Pharmacol. 2 (2014) 377-392.

Google Scholar

[5] A. Agarwal, S.V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach, Resource-Efficient Technologies 3 (2017) 406-413.

DOI: 10.1016/j.reffit.2017.03.002

Google Scholar

[6] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, J. Adv. Res. 7 (2016) 17-28.

DOI: 10.1016/j.jare.2015.02.007

Google Scholar

[7] M. Rafique, I. Sadaf, M.S. Rafique, M.B. Tahir, A review on green synthesis of silver nanoparticles and their applications, Artif. Cells Nanomed. Biotechnol. 45 (2017) 1272-1291.

DOI: 10.1080/21691401.2016.1241792

Google Scholar

[8] J. Loma Abaas, A.A. Hameed, M.A. Al-Heety, A.R. Mahmood, A. Karadağ, H. Akbaş, The mixture of silver nanosquare and silver nanohexagon: green synthesis, characterization and kinetic evolution, Mater. Res. Express. 6 (2019) 1-8.

DOI: 10.1088/2053-1591/ab27f3

Google Scholar

[9] M.A. Odeniyi, V.C. Okumah, B.C. Adebayo-Tayo, O.A. Odeniyi, Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities, Sustain. Chem. Pharm. 15 (2020) 100197.

DOI: 10.1016/j.scp.2019.100197

Google Scholar

[10] B.D. Salih, A.H. Ali, M.A. Alheety, A.R. Mahmood, A. Karadağ, A. Aydın, Biosynthesis of Ag nanospheres using waste phoenix dactylifera argonne: a prospective anticancer and antibacterial, Mater. Res. Express. 6 (2019) 1-11.

DOI: 10.1088/2053-1591/ab3bad

Google Scholar

[11] M. Kikowska, M. Dworacka, I. Kędziora, B. Thiem, Eryngium creticum – ethnopharmacology, phytochemistry and pharmacological activity. A review, Rev. Bras. Farmacogn. 26 (2106) 392-399.

DOI: 10.1016/j.bjp.2016.01.008

Google Scholar

[12] R.D.H. Murray, Naturally occurring plant coumarins. Fortschritte der Chemie organischer Naturstoffe (Progress in the chemistry of organic natural products), Springer, Vienna, 1991, pp.83-316.

DOI: 10.1007/978-3-7091-9141-5_2

Google Scholar

[13] U.W. Hawas, L.T. El-Kassem, H.M. Awad, H.A. Taie, Anti-Alzheimer, Antioxidant Activities and Flavonol Glycosides of Eryngium campestre L, Curr. Chem. Biol. 7 (2013) 188-195.

DOI: 10.2174/2212796811307020010

Google Scholar

[14] P. Wang, Z. Su, W. Yuan, G. Deng, S. Li, Phytochemical constituents and pharmacological activities of Eryngium L.(Apiaceae), Pharmaceutical Crops 3 (2012) 99-120.

DOI: 10.2174/2210290601203010099

Google Scholar

[15] C.W. Choi, S.C. Kim, S.S. Hwang, B.K. Choi, H.J. Ahn, M.Y. Lee, S.H. Park, S.K. Kim, Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison, Plant Sci. 163 (2002) 1161-1168.

DOI: 10.1016/s0168-9452(02)00332-1

Google Scholar

[16] Meda, C.E. Lamien, M. Romito, J. Millogo, O.G. Nacoulma, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity, Food Chem. 91 (2005) 571-577.

DOI: 10.1016/j.foodchem.2004.10.006

Google Scholar

[17] C. Quettier-Deleu, B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J.C. Cazin, F. Bailleul, F. Trotin, Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour, J. Ethnopharmacol. 72 (2000) 35-42.

DOI: 10.1016/s0378-8741(00)00196-3

Google Scholar

[18] J.H. Jorgensen, J.D. Turnidge, Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology, Eleventh Edition, ASM Press, Washington, 2015, pp.1253-1273.

DOI: 10.1128/9781555817381.ch71

Google Scholar

[19] B. Thiem, O. Goslinska, M. Kikowska, J. Budzianowski, Antimicrobial activity of three Eryngium L. species (Apiaceae), Herba. polonica 56 (2010) 52-59.

DOI: 10.1515/hepo-2016-0012

Google Scholar

[20] G. Brunner, Hydrothermal and supercritical water processes, Burlington: Elsevier Science, Amsterdam, 2014, pp.2-666.

Google Scholar

[21] Sereewatthanawut, S. Prapintip, K. Watchiraruji, M. Goto, M. Sasaki, A. Shotipruk, Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis, Bioresour. Technol. 99 (2008) 555-561.

DOI: 10.1016/j.biortech.2006.12.030

Google Scholar

[22] D. MubarakAli, N. Thajuddin, K. Jeganathan, M. Gunasekaran, Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloid. Surface. B. 85 (2011) 360-365.

DOI: 10.1016/j.colsurfb.2011.03.009

Google Scholar

[23] F. Khan, M.U. Hashmi, N. Khalid, M.Q. Hayat, A. Ikram, H.A. Janjua, Controlled assembly of silver nano-fluid in Heliotropium crispum extract: a potent anti-biofilm and bactericidal formulation, Appl. Surf. Sci. 387 (2016) 317-331.

DOI: 10.1016/j.apsusc.2016.05.133

Google Scholar

[24] S. Roy, S. Shankar, J.W. Rhim, Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films, Food Hydrocoll. 88 (2019) 237-246.

DOI: 10.1016/j.foodhyd.2018.10.013

Google Scholar

[25] F.K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, M. Lin, Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities, Colloids Surf B Biointerfaces. 171 (2018) 398-405.

DOI: 10.1016/j.colsurfb.2018.07.059

Google Scholar

[26] G.M. Sangaonkar, K.D. Pawar, Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities, Colloids Surf B Biointerfaces 164 (2018) 210-217.

DOI: 10.1016/j.colsurfb.2018.01.044

Google Scholar

[27] E.C. Vreeland, J. Watt, G.B. Schober, B.G. Hance, M.J. Austin, A.D. Price, B.D. Fellows, T.C. Monson, N.S. Hudak, L. Maldonado-Camargo, A.C. Bohorquez, C. Rinaldi, D.L. Huber, Enhanced nanoparticle size control by extending LaMer's mechanism, Chem. Mater. 27 (2015) 6059-6066.

DOI: 10.1021/acs.chemmater.5b02510

Google Scholar

[28] B. Kumar, K. Smita, R. Seqqat, K. Benalcazar, M. Grijalva, L. Cumbal, In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application, J. Photoche. Photobiol. B. 159 (2016) 8-13. DOI: 10.101 6/j.jphotobiol.2016.03.011.

DOI: 10.1016/j.jphotobiol.2016.03.011

Google Scholar

[29] V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid. Interfac. 145(2009) 83-96.

DOI: 10.1016/j.cis.2008.09.002

Google Scholar

[30] B. Soumia, Eryngium campestre L.: Polyphenolic and Flavonoid Compounds; Applications to Health and Disease, Academic Press, United States, 2018, pp.69-79.

DOI: 10.1016/b978-0-12-813006-3.00007-6

Google Scholar

[31] D. Li, Z. Liu, Y. Yuan, Y. Liu, F. Niu, Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells, Process Biochem. 50 (2015) 357-366.

DOI: 10.1016/j.procbio.2015.01.002

Google Scholar

[32] J. Park, S.H. Cha, S. Cho, Y. Park, Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction, J. Nanopart. Res. 18 (2016) 166.

DOI: 10.1007/s11051-016-3466-2

Google Scholar

[33] G. Seltmann, O. Holst, The bacterial cell wall, Springer-Verlag Berlin Heidelberg, Berlin, 2013.

Google Scholar

[34] Mai-Prochnow, M. Clauson, J. Hong, A.B. Murphy, Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma, Sci. Rep. 6 (2016) 38610.

DOI: 10.1038/srep38610

Google Scholar

[35] N. Durán, M. Durán, M.B. DeJesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomed-Nanotechnol 12 (2016) 789-799.

DOI: 10.1016/j.nano.2015.11.016

Google Scholar

[36] N.A. Jaradat, Novel serial extraction method for antibacterial and antifungal evaluations of the entire Eryngium campestre L. plant from Jerusalem/Palestine, J. Chem. Pharm. 7 (2015) 905-913.

Google Scholar

[37] Ihsan, T.Y. Qiang, N. Ilahi, M. Adnan, W. Sajjad, Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens, Int. J. Biosci. 13 (2018) 1-5.

DOI: 10.12692/ijb/13.5.113-127

Google Scholar

[38] K. Faria, M.U. Hashmi, N. Khalid, M.Q. Hayat, A. Ikram, H.A. Janjua, Controlled assembly of silver nano-fluid in Heliotropium crispum extract: a potent anti-biofilm and bactericidal formulation, Appl. Surf. Sci. 387 (2016) 317-331.

DOI: 10.1016/j.apsusc.2016.05.133

Google Scholar

[39] A.I. Mekkawy I, M.A. El-Mokhtar, N.A. Nafady, N. Yousef, M.A. Hamad, S.M. El-Shanawany, E.H. Ibrahim, M., Elsabahy, In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels, Int. J. Nanomedicine 12 (2017) 759-777.

DOI: 10.2147/ijn.s124294

Google Scholar

[40] M.A. Ansari, M.A. Alzohairy, One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA, Evid. Based Complementary Altern. Med. 2018 (2018) 1-9.

DOI: 10.1155/2018/1860280

Google Scholar

[41] K. Muthupandi, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi, Z.K. Shinwari, Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients, J. Interdiscip. Nanomed. 2 (2017) 131-141.

DOI: 10.1002/jin2.26

Google Scholar

[42] M.A. Raza, Z. Kanwal, A. Rauf, A.N. Sabri, S. Riaz, S. Naseem, Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes, J. Nanomater. 6 (2016) 74.

DOI: 10.3390/nano6040074

Google Scholar

[43] L. Kvítek, A. Panáček, J. Soukupova, M. Kolář, R. Večeřová, R. Prucek, M. Holecov-Aacute, R. Zbořil, Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs), J. Phys. Chem. C. 112 (2008) 5825-5834.

DOI: 10.1021/jp711616v

Google Scholar

[44] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73(2007) 1712-1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[45] J.J. Vijaya, N. Jayaprakash, K. Kombaiah, K. Kaviyarasu, L.J. Kennedy, R.J. Ramalingam, H.A. AlLohedan, M.A.V. Mohammed, M. Maaza, Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: antibacterial studies, J. Photoch. Photobio. B. 177 (2017) 62-68.

DOI: 10.1016/j.jphotobiol.2017.10.007

Google Scholar

[46] S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions, Chem. Mater. 22 (2010) 4548-4554.

DOI: 10.1021/cm100023p

Google Scholar

[47] M. Gomathi, P.V. Rajkumar, A. Prakasam, Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparticles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity, Results Phys. 10 (2018) 858-864.

DOI: 10.1016/j.rinp.2018.08.011

Google Scholar

[48] S.G. Sparg, M.E. Light, J. Van Staden, Biological activities and distribution of plant saponins, J. Ethnopharmacol, 94 (2004) 219-243.

DOI: 10.1016/j.jep.2004.05.016

Google Scholar

[49] M. Petersen, M.S. Simmonds, Rosmarinic acid, Phytochemistry 62 (2003) 121-125.

Google Scholar

[50] S.A. Erdem, S.F. Nabavi, I.E. Orhan, M. Daglia, M. Izadi, S.M. Nabavi, Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium, DARU 23(2015) 53-75.

DOI: 10.1186/s40199-015-0136-3

Google Scholar

[51] V. Ahluwalia, S. Elumalai, V. Kumar, S. Kumar, R.S. Sangwan, Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity, Microb. Pathog. 114 (2017) 402-408.

DOI: 10.1016/j.micpath.2017.11.052

Google Scholar