Scale-Up Studies for Polyhydroxyalkanoate and Halocin Production by Halomonas Sp. as Potential Biomedical Materials

Article Preview

Abstract:

Polyhydroxyalkanoates (PHA) are the biomaterials isolated naturally from bacterial strains. These are present in granules and accumulated intracellularly for storage and energy uptake in stressed conditions. This work was based on the extraction of polyhydroxyalkanoates from haloarchaeal strains isolated from samples of a salt mine and Halocin activity screening of these isolates. For the screening of polyhydroxyalkanoates, Nile Blue and Sudan Black Staining were performed. After confirmation and theoretical determination, polyhydroxyalkanoates extraction was done by sodium hypochlorite digestion and solvent extraction by chloroform method in combination. Polyhydroxyalkanoates production was calculated along with the determination of biomass. Halocin activity of these strains was also screened at different intervals. Isolated strains were identified by 16S RNA gene sequencing. Polyhydroxyalkanoates polymer was produced in form of biofilms and brittle crystals. Halocin activity was exhibited by four strains, among which confirmed halocin activity was shown by strain K7. The remarkable results showed that polyhydroxyalkanoates can replace synthetic plastics which are not environment friendly as they cause environmental pollution – a major threat to Earth rising gradually. Therefore, by switching to the use of biodegradable bioplastics from the use of synthetic plastics, it would be beneficial to the ecosphere.

You might also be interested in these eBooks

Info:

Pages:

49-60

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.S. Atanasova, M.K. Pietila, H.M. Oksanen, Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier, MicrobiologyOpen 2(5) (2013) 811-25.

DOI: 10.1002/mbo3.115

Google Scholar

[2] M.J.-L. Tschan, E. Brulé, P. Haquette, C.M. Thomas, Synthesis of biodegradable polymers from renewable resources, Polym. Chem. 3(4) (2012) 836-851.

DOI: 10.1039/c2py00452f

Google Scholar

[3] J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development, Int. J. Mol. Sci. 16(1) (2015) 564-96.

DOI: 10.3390/ijms16010564

Google Scholar

[4] T. Thomas, K. Sudesh, A. Bazire, A. Elain, H.T. Tan, H. Lim, S. Bruzaud, PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003, Bioeng. 7(1) (2020) 29.

DOI: 10.3390/bioengineering7010029

Google Scholar

[5] I.G. Afghan, A. Shrivastav, Isolation and Screening of Polyhydroxyalkanoates (PHA) Producing Bacteria Utilizing Agricultural Waste, Int. J. Appl. Sci. Biotechnol. 8(3) (2020) 336-342.

DOI: 10.3126/ijasbt.v8i3.31566

Google Scholar

[6] D. Van‐Thuoc, T. Huu‐Phong, N. Thi‐Binh, N. Thi‐Tho, D. Minh‐Lam, J. Quillaguaman, Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam, MicrobiologyOpen 1(4) (2012) 395-406.

DOI: 10.1002/mbo3.44

Google Scholar

[7] A.S. Martin Koller, Alexander Muhr, Angelika Reiterer, Gerhart Braunegg, Polyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resources, Mater. Technol. (2013).

Google Scholar

[8] R. Nigmatullin, P. Thomas, B. Lukasiewicz, H. Puthussery, I. Roy, Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery, J. Chem. Technol. Biotechnol. 90(7) (2015) 1209-1221.

DOI: 10.1002/jctb.4685

Google Scholar

[9] Z.A. Raza, M.R. Tariq, M.I. Majeed, I.M. Banat, Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates, Bioprocess Biosyst. Eng. 42(6) (2019) 901-919.

DOI: 10.1007/s00449-019-02093-x

Google Scholar

[10] A.K. Bhuwal, G. Singh, N.K. Aggarwal, V. Goyal, A. Yadav, Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes, Int. J. Biomater. 2013 (2013) 752821.

DOI: 10.1155/2013/752821

Google Scholar

[11] A.M. Gumel, M.S.M. Annuar, T. Heidelberg, Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent, PLoS One 7(9) (2012) e45214.

DOI: 10.1371/journal.pone.0045214

Google Scholar

[12] S.-S.Y. Jiun-Yee Chee, Nyok-Sean Lau, Siew-Chen Ling, Raeid M. M. Abed, Kumar Sudesh, Bacterially Produced Polyhydroxyalkanoate (PHA): Converting Renewable Resources into Bioplastics, Technol. Edu. Topics Appl. Microbiol. Microb. Biotechnol. (2010).

Google Scholar

[13] A. Poli, P. Di Donato, G.R. Abbamondi, B. Nicolaus, Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea, Archaea 2011 (2011) 693253.

DOI: 10.1155/2011/693253

Google Scholar

[14] A.R. Yasin, I.K. Al-Mayaly, Study of the Fermentation Conditions of the Bacillus Cereus Strain ARY73 to Produce Polyhydroxyalkanoate (PHA) from Glucose, J. Ecol. Eng. 22(8) (2021) 41-53.

DOI: 10.12911/22998993/140326

Google Scholar

[15] P. Spiekermann, B.H.A. Rehm, R. Kalscheuer, D. Baumeister, A. Steinbüchel, A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds, Arch. Microbiol. 171(2) (1999) 73-80.

DOI: 10.1007/s002030050681

Google Scholar

[16] V. Cánovas, S. Garcia-Chumillas, F. Monzó, L. Simó-Cabrera, C. Fernández-Ayuso, C. Pire, R.M.M. Espinosa, Analysis of Polyhydroxyalkanoates Granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy, Polymers 13(10) (2021) 1582.

DOI: 10.3390/polym13101582

Google Scholar

[17] D. Ratnaningrum, V. Saraswaty, S. Priatni, P. Lisdiyanti, A. Purnomo, S. Pudjiraharti, Screening of polyhydroxyalkanoates (PHA)-producing bacteria from soil bacteria strains, IOP Conference Series: Earth Environ. Sci., IOP Publishing, 2019, p.012003.

DOI: 10.1088/1755-1315/277/1/012003

Google Scholar

[18] R. Meknaci, P. Lopes, C. Servy, J.-P. Le Caer, J.-P. Andrieu, H. Hacène, J. Ouazzani, Agar-supported cultivation of Halorubrum sp. SSR, and production of halocin C8 on the scale-up prototype Platotex, Extremophiles 18(6) (2014) 1049-1055.

DOI: 10.1007/s00792-014-0682-5

Google Scholar

[19] N. Imadalou-Idres, A. Carré-Mlouka, M. Vandervennet, H. Yahiaoui, J. Peduzzi, S. Rebuffat, Diversity and antimicrobial activity of cultivable halophilic archaea from three Algerian sites, J. Life Sci 7(10) (2013) 1057.

Google Scholar

[20] S. Mazguene, M. Rossi, M. Gogliettino, G. Palmieri, E. Cocca, S. Mirino, N. Imadalou-Idres, S. Benallaoua, Isolation and characterization from solar salterns of North Algeria of a haloarchaeon producing a new halocin, Extremophiles (2017) 1-12.

DOI: 10.1007/s00792-017-0994-3

Google Scholar

[21] P. Manikandan, J. Moopantakath, M. Imchen, R. Kumavath, P. SenthilKumar, Identification of Multi-Potent Protein Subtilisin A from halophilic bacterium Bacillus firmus VE2, Microb. Pathog. (2021) 105007.

DOI: 10.1016/j.micpath.2021.105007

Google Scholar

[22] A. Rodriguez-Contreras, M. Koller, M.M. de Sousa Dias, M. Calafell, G. Braunegg, M.S. Marqués-Calvo, Novel Poly [(R)-3-hydroxybutyrate]-producing bacterium isolated from a Bolivian hypersaline lake, Food Technol. Biotechnol. 51(1) (2013) 123-130.

DOI: 10.1111/jam.12151

Google Scholar

[23] E.Z. Gomaa, Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol, Braz Arch. Biol. Technol. 57(1) (2014) 145-154.

DOI: 10.1590/s1516-89132014000100020

Google Scholar

[24] S. Tohme, G.G. Hacıosmanoğlu, M.S. Eroğlu, C. Kasavi, S. Genç, Z.S. Can, E.T. Oner, Halomonas smyrnensis as a cell factory for co-production of PHB and levan, Int. J. Biol. Macromol. 118 (2018) 1238-1246.

DOI: 10.1016/j.ijbiomac.2018.06.197

Google Scholar

[25] P.N.a.S.K.M. K. Chaitanya, Isolation, Molecular characterization and PHA production by a novel Bacillus sp., SKM155 from Polluted water, Int. J. Pharm. BioSci. (2015).

Google Scholar

[26] M. Villano, F. Valentino, A. Barbetta, L. Martino, M. Scandola, M. Majone, Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process, New Biotechnol. 31(4) (2014) 289-296.

DOI: 10.1016/j.nbt.2013.08.001

Google Scholar

[27] A. Raj, V. Ibrahim, M. Devi, K. Sekar, B. Yogesh, S. Bharathi, Screening, optimization and characterization of poly hydroxy alkanoates (pha) produced from microbial isolates, Int. J. Curr. Microbiol. Appl. Sci. 3 (2014) 785-790.

Google Scholar

[28] M.V. Arcos-Hernandez, N. Gurieff, S. Pratt, P. Magnusson, A. Werker, A. Vargas, P. Lant, Rapid quantification of intracellular PHA using infrared spectroscopy: an application in mixed cultures, J. Biotechnol. 150(3) (2010) 372-379.

DOI: 10.1016/j.jbiotec.2010.09.939

Google Scholar

[29] S.V. Mohan, M.V. Reddy, Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology, Bioresour. Technol. 128 (2013) 409-416.

DOI: 10.1016/j.biortech.2012.10.037

Google Scholar

[30] A. Stanley, H.N. Punil Kumar, S. Mutturi, S.V.N. Vijayendra, Fed-Batch Strategies for Production of PHA Using a Native Isolate of Halomonas venusta KT832796 Strain, Appl. Biochem. Biotechnol. 184(3) (2018) 935-952.

DOI: 10.1007/s12010-017-2601-6

Google Scholar

[31] A. Besse, J. Peduzzi, S. Rebuffat, A. Carre-Mlouka, Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins, Biochimie 118 (2015) 344-355.

DOI: 10.1016/j.biochi.2015.06.004

Google Scholar

[32] V. Kumar, S.K. Tiwari, Halocin diversity among Halophilic Archaea and their applications, Microbial diversity in ecosystem sustainability and biotechnological applications, Springer2019, pp.497-532.

DOI: 10.1007/978-981-13-8315-1_16

Google Scholar

[33] C. Sun, Y. Li, S. Mei, Q. Lu, L. Zhou, H. Xiang, A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092, Mol. Microbiol. 57(2) (2005) 537-549.

DOI: 10.1111/j.1365-2958.2005.04705.x

Google Scholar

[34] V. Kumar, J. Saxena, S.K. Tiwari, Description of a halocin-producing Haloferax larsenii HA1 isolated from Pachpadra salt lake in Rajasthan, Arch. Microbiol. 198(2) (2016) 181-192.

DOI: 10.1007/s00203-015-1175-3

Google Scholar

[35] S.Y. Ong, I. Zainab-L, S. Pyary, K. Sudesh, A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals, Appl. Microbiol. Biotechnol. 102(5) (2018) 2117-2127.

DOI: 10.1007/s00253-018-8788-9

Google Scholar

[36] D. Heinrich, M.H. Madkour, M.A. Al-Ghamdi, I.I. Shabbaj, A. Steinbüchel, Large scale extraction of poly (3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite, AMB Express 2(1) (2012) 59.

DOI: 10.1186/2191-0855-2-59

Google Scholar

[37] S.N.S. Anis, M. Nurhezreen, K. Sudesh, A. Amirul, Enhanced recovery and purification of P (3HB-co-3HHx) from recombinant Cupriavidus necator using alkaline digestion method, Appl. Biochem. Biotechnol. 167(3) (2012) 524-535.

DOI: 10.1007/s12010-012-9677-9

Google Scholar

[38] K. Ishak, M. Annuar, T. Heidelberg, A. Gumel, Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly (3-hydroxyalkanoates)(mcl-PHAs) in medium mixture of solvent/marginal non-solvent, Arab. J. Sci. Eng. 41(1) (2016) 33-44.

DOI: 10.1007/s13369-015-1833-4

Google Scholar

[39] S.L. Riedel, C.J. Brigham, C.F. Budde, J. Bader, C. Rha, U. Stahl, A.J. Sinskey, Recovery of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from Ralstonia eutropha cultures with non‐halogenated solvents, Biotechnol. Bioeng. 110(2) (2013) 461-470.

DOI: 10.1002/bit.24713

Google Scholar

[40] S. Mazguene, M. Rossi, M. Gogliettino, G. Palmieri, E. Cocca, S. Mirino, N. Imadalou-Idres, S. Benallaoua, Isolation and characterization from solar salterns of North Algeria of a haloarchaeon producing a new halocin, Extremophiles 22(2) (2018) 259-270.

DOI: 10.1007/s00792-017-0994-3

Google Scholar