[1]
N.S. Atanasova, M.K. Pietila, H.M. Oksanen, Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier, MicrobiologyOpen 2(5) (2013) 811-25.
DOI: 10.1002/mbo3.115
Google Scholar
[2]
M.J.-L. Tschan, E. Brulé, P. Haquette, C.M. Thomas, Synthesis of biodegradable polymers from renewable resources, Polym. Chem. 3(4) (2012) 836-851.
DOI: 10.1039/c2py00452f
Google Scholar
[3]
J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development, Int. J. Mol. Sci. 16(1) (2015) 564-96.
DOI: 10.3390/ijms16010564
Google Scholar
[4]
T. Thomas, K. Sudesh, A. Bazire, A. Elain, H.T. Tan, H. Lim, S. Bruzaud, PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003, Bioeng. 7(1) (2020) 29.
DOI: 10.3390/bioengineering7010029
Google Scholar
[5]
I.G. Afghan, A. Shrivastav, Isolation and Screening of Polyhydroxyalkanoates (PHA) Producing Bacteria Utilizing Agricultural Waste, Int. J. Appl. Sci. Biotechnol. 8(3) (2020) 336-342.
DOI: 10.3126/ijasbt.v8i3.31566
Google Scholar
[6]
D. Van‐Thuoc, T. Huu‐Phong, N. Thi‐Binh, N. Thi‐Tho, D. Minh‐Lam, J. Quillaguaman, Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam, MicrobiologyOpen 1(4) (2012) 395-406.
DOI: 10.1002/mbo3.44
Google Scholar
[7]
A.S. Martin Koller, Alexander Muhr, Angelika Reiterer, Gerhart Braunegg, Polyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resources, Mater. Technol. (2013).
Google Scholar
[8]
R. Nigmatullin, P. Thomas, B. Lukasiewicz, H. Puthussery, I. Roy, Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery, J. Chem. Technol. Biotechnol. 90(7) (2015) 1209-1221.
DOI: 10.1002/jctb.4685
Google Scholar
[9]
Z.A. Raza, M.R. Tariq, M.I. Majeed, I.M. Banat, Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates, Bioprocess Biosyst. Eng. 42(6) (2019) 901-919.
DOI: 10.1007/s00449-019-02093-x
Google Scholar
[10]
A.K. Bhuwal, G. Singh, N.K. Aggarwal, V. Goyal, A. Yadav, Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes, Int. J. Biomater. 2013 (2013) 752821.
DOI: 10.1155/2013/752821
Google Scholar
[11]
A.M. Gumel, M.S.M. Annuar, T. Heidelberg, Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent, PLoS One 7(9) (2012) e45214.
DOI: 10.1371/journal.pone.0045214
Google Scholar
[12]
S.-S.Y. Jiun-Yee Chee, Nyok-Sean Lau, Siew-Chen Ling, Raeid M. M. Abed, Kumar Sudesh, Bacterially Produced Polyhydroxyalkanoate (PHA): Converting Renewable Resources into Bioplastics, Technol. Edu. Topics Appl. Microbiol. Microb. Biotechnol. (2010).
Google Scholar
[13]
A. Poli, P. Di Donato, G.R. Abbamondi, B. Nicolaus, Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea, Archaea 2011 (2011) 693253.
DOI: 10.1155/2011/693253
Google Scholar
[14]
A.R. Yasin, I.K. Al-Mayaly, Study of the Fermentation Conditions of the Bacillus Cereus Strain ARY73 to Produce Polyhydroxyalkanoate (PHA) from Glucose, J. Ecol. Eng. 22(8) (2021) 41-53.
DOI: 10.12911/22998993/140326
Google Scholar
[15]
P. Spiekermann, B.H.A. Rehm, R. Kalscheuer, D. Baumeister, A. Steinbüchel, A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds, Arch. Microbiol. 171(2) (1999) 73-80.
DOI: 10.1007/s002030050681
Google Scholar
[16]
V. Cánovas, S. Garcia-Chumillas, F. Monzó, L. Simó-Cabrera, C. Fernández-Ayuso, C. Pire, R.M.M. Espinosa, Analysis of Polyhydroxyalkanoates Granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy, Polymers 13(10) (2021) 1582.
DOI: 10.3390/polym13101582
Google Scholar
[17]
D. Ratnaningrum, V. Saraswaty, S. Priatni, P. Lisdiyanti, A. Purnomo, S. Pudjiraharti, Screening of polyhydroxyalkanoates (PHA)-producing bacteria from soil bacteria strains, IOP Conference Series: Earth Environ. Sci., IOP Publishing, 2019, p.012003.
DOI: 10.1088/1755-1315/277/1/012003
Google Scholar
[18]
R. Meknaci, P. Lopes, C. Servy, J.-P. Le Caer, J.-P. Andrieu, H. Hacène, J. Ouazzani, Agar-supported cultivation of Halorubrum sp. SSR, and production of halocin C8 on the scale-up prototype Platotex, Extremophiles 18(6) (2014) 1049-1055.
DOI: 10.1007/s00792-014-0682-5
Google Scholar
[19]
N. Imadalou-Idres, A. Carré-Mlouka, M. Vandervennet, H. Yahiaoui, J. Peduzzi, S. Rebuffat, Diversity and antimicrobial activity of cultivable halophilic archaea from three Algerian sites, J. Life Sci 7(10) (2013) 1057.
Google Scholar
[20]
S. Mazguene, M. Rossi, M. Gogliettino, G. Palmieri, E. Cocca, S. Mirino, N. Imadalou-Idres, S. Benallaoua, Isolation and characterization from solar salterns of North Algeria of a haloarchaeon producing a new halocin, Extremophiles (2017) 1-12.
DOI: 10.1007/s00792-017-0994-3
Google Scholar
[21]
P. Manikandan, J. Moopantakath, M. Imchen, R. Kumavath, P. SenthilKumar, Identification of Multi-Potent Protein Subtilisin A from halophilic bacterium Bacillus firmus VE2, Microb. Pathog. (2021) 105007.
DOI: 10.1016/j.micpath.2021.105007
Google Scholar
[22]
A. Rodriguez-Contreras, M. Koller, M.M. de Sousa Dias, M. Calafell, G. Braunegg, M.S. Marqués-Calvo, Novel Poly [(R)-3-hydroxybutyrate]-producing bacterium isolated from a Bolivian hypersaline lake, Food Technol. Biotechnol. 51(1) (2013) 123-130.
DOI: 10.1111/jam.12151
Google Scholar
[23]
E.Z. Gomaa, Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol, Braz Arch. Biol. Technol. 57(1) (2014) 145-154.
DOI: 10.1590/s1516-89132014000100020
Google Scholar
[24]
S. Tohme, G.G. Hacıosmanoğlu, M.S. Eroğlu, C. Kasavi, S. Genç, Z.S. Can, E.T. Oner, Halomonas smyrnensis as a cell factory for co-production of PHB and levan, Int. J. Biol. Macromol. 118 (2018) 1238-1246.
DOI: 10.1016/j.ijbiomac.2018.06.197
Google Scholar
[25]
P.N.a.S.K.M. K. Chaitanya, Isolation, Molecular characterization and PHA production by a novel Bacillus sp., SKM155 from Polluted water, Int. J. Pharm. BioSci. (2015).
Google Scholar
[26]
M. Villano, F. Valentino, A. Barbetta, L. Martino, M. Scandola, M. Majone, Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process, New Biotechnol. 31(4) (2014) 289-296.
DOI: 10.1016/j.nbt.2013.08.001
Google Scholar
[27]
A. Raj, V. Ibrahim, M. Devi, K. Sekar, B. Yogesh, S. Bharathi, Screening, optimization and characterization of poly hydroxy alkanoates (pha) produced from microbial isolates, Int. J. Curr. Microbiol. Appl. Sci. 3 (2014) 785-790.
Google Scholar
[28]
M.V. Arcos-Hernandez, N. Gurieff, S. Pratt, P. Magnusson, A. Werker, A. Vargas, P. Lant, Rapid quantification of intracellular PHA using infrared spectroscopy: an application in mixed cultures, J. Biotechnol. 150(3) (2010) 372-379.
DOI: 10.1016/j.jbiotec.2010.09.939
Google Scholar
[29]
S.V. Mohan, M.V. Reddy, Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology, Bioresour. Technol. 128 (2013) 409-416.
DOI: 10.1016/j.biortech.2012.10.037
Google Scholar
[30]
A. Stanley, H.N. Punil Kumar, S. Mutturi, S.V.N. Vijayendra, Fed-Batch Strategies for Production of PHA Using a Native Isolate of Halomonas venusta KT832796 Strain, Appl. Biochem. Biotechnol. 184(3) (2018) 935-952.
DOI: 10.1007/s12010-017-2601-6
Google Scholar
[31]
A. Besse, J. Peduzzi, S. Rebuffat, A. Carre-Mlouka, Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins, Biochimie 118 (2015) 344-355.
DOI: 10.1016/j.biochi.2015.06.004
Google Scholar
[32]
V. Kumar, S.K. Tiwari, Halocin diversity among Halophilic Archaea and their applications, Microbial diversity in ecosystem sustainability and biotechnological applications, Springer2019, pp.497-532.
DOI: 10.1007/978-981-13-8315-1_16
Google Scholar
[33]
C. Sun, Y. Li, S. Mei, Q. Lu, L. Zhou, H. Xiang, A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092, Mol. Microbiol. 57(2) (2005) 537-549.
DOI: 10.1111/j.1365-2958.2005.04705.x
Google Scholar
[34]
V. Kumar, J. Saxena, S.K. Tiwari, Description of a halocin-producing Haloferax larsenii HA1 isolated from Pachpadra salt lake in Rajasthan, Arch. Microbiol. 198(2) (2016) 181-192.
DOI: 10.1007/s00203-015-1175-3
Google Scholar
[35]
S.Y. Ong, I. Zainab-L, S. Pyary, K. Sudesh, A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals, Appl. Microbiol. Biotechnol. 102(5) (2018) 2117-2127.
DOI: 10.1007/s00253-018-8788-9
Google Scholar
[36]
D. Heinrich, M.H. Madkour, M.A. Al-Ghamdi, I.I. Shabbaj, A. Steinbüchel, Large scale extraction of poly (3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite, AMB Express 2(1) (2012) 59.
DOI: 10.1186/2191-0855-2-59
Google Scholar
[37]
S.N.S. Anis, M. Nurhezreen, K. Sudesh, A. Amirul, Enhanced recovery and purification of P (3HB-co-3HHx) from recombinant Cupriavidus necator using alkaline digestion method, Appl. Biochem. Biotechnol. 167(3) (2012) 524-535.
DOI: 10.1007/s12010-012-9677-9
Google Scholar
[38]
K. Ishak, M. Annuar, T. Heidelberg, A. Gumel, Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly (3-hydroxyalkanoates)(mcl-PHAs) in medium mixture of solvent/marginal non-solvent, Arab. J. Sci. Eng. 41(1) (2016) 33-44.
DOI: 10.1007/s13369-015-1833-4
Google Scholar
[39]
S.L. Riedel, C.J. Brigham, C.F. Budde, J. Bader, C. Rha, U. Stahl, A.J. Sinskey, Recovery of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from Ralstonia eutropha cultures with non‐halogenated solvents, Biotechnol. Bioeng. 110(2) (2013) 461-470.
DOI: 10.1002/bit.24713
Google Scholar
[40]
S. Mazguene, M. Rossi, M. Gogliettino, G. Palmieri, E. Cocca, S. Mirino, N. Imadalou-Idres, S. Benallaoua, Isolation and characterization from solar salterns of North Algeria of a haloarchaeon producing a new halocin, Extremophiles 22(2) (2018) 259-270.
DOI: 10.1007/s00792-017-0994-3
Google Scholar