Methods for Green Synthesis of Metallic Nanoparticles Using Plant Extracts and their Biological Applications - A Review

Article Preview

Abstract:

Nanotechnology, a fast-developing branch of science, is gaining extensive popularity among researchers simply because of the multitude of applications it can offer. In recent years, biological synthesis has been widely used instead of physical and chemical synthesis methods, which often produce toxic products. These synthesis methods are now being commonly adapted to discover new applications of nanoparticles synthesized using plant extracts. In this review, we elucidate the various ways by which nanoparticles can be biologically synthesized. We further discuss the applications of these nanoparticles.

You might also be interested in these eBooks

Info:

Pages:

75-151

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Thangudu, P. Kalluru, and R. Vankayala, Preparation, Cytotoxicity, and In Vitro Bioimaging of Water Soluble and Highly Fluorescent Palladium Nanoclusters,, Bioengineering 2020, Vol. 7, Page 20, vol. 7, p.20, feb (2020).

DOI: 10.3390/bioengineering7010020

Google Scholar

[2] S. Thangudu, M. T. Lee, and S. Rtimi, Tandem Synthesis of High Yield MoS2 Nanosheets and Enzyme Peroxidase Mimicking Properties,, Catalysts 2020, Vol. 10, Page 1009, vol. 10, p.1009, sep (2020).

DOI: 10.3390/catal10091009

Google Scholar

[3] X. Luo, A. Morrin, A. Killard, and M. Smyth, Application of Nanoparticles in Electrochemical Sensors and Biosensors,, Electroanalysis, vol. 18, p.319–326, feb (2006).

DOI: 10.1002/elan.200503415

Google Scholar

[4] J. B. Haun, T.-J. Yoon, H. Lee, and R. Weissleder, Magnetic nanoparticle biosensors,, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, p.291–304, may (2010).

DOI: 10.1002/wnan.84

Google Scholar

[5] J. Cao, T. Sun, and K. T. Grattan, Gold nanorod-based localized surface plasmon resonance biosensors: A review,, Sensors and Actuators B: Chemical, vol. 195, p.332–351, may (2014).

DOI: 10.1016/j.snb.2014.01.056

Google Scholar

[6] H. Aldewachi, T. Chalati, M. N. Woodroofe, N. Bricklebank, B. Sharrack, and P. Gardiner, Gold nanoparticle-based colorimetric biosensors,, Nanoscale, vol. 10, p.18–33, dec (2017).

DOI: 10.1039/c7nr06367a

Google Scholar

[7] Y. Li, H. J. Schluesener, and S. Xu, Gold nanoparticle-based biosensors,, Gold Bulletin 2010 43:1, vol. 43, no. 1, p.29–41, (2010).

DOI: 10.1007/bf03214964

Google Scholar

[8] P. Jiang, Y. Wang, L. Zhao, C. Ji, D. Chen, and L. Nie, Applications of Gold Nanoparticles in Non-Optical Biosensors,, Nanomaterials 2018, Vol. 8, Page 977, vol. 8, p.977, nov (2018).

DOI: 10.3390/nano8120977

Google Scholar

[9] S. Prabha, D. Durgalakshmi, S. Rajendran, and E. Lichtfouse, Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review,, Environmental Chemistry Letters 2020 19:2, vol. 19, p.1667–1691, nov (2020).

DOI: 10.1007/s10311-020-01123-5

Google Scholar

[10] M. L. Hans and A. M. Lowman, Biodegradable nanoparticles for drug delivery and targeting,, Current Opinion in Solid State and Materials Science, vol. 6, p.319–327, aug (2002).

DOI: 10.1016/s1359-0286(02)00117-1

Google Scholar

[11] W. H. D. Jong and P. J. Borm, Drug delivery and nanoparticles: Applications and hazards,, International Journal of Nanomedicine, vol. 3, p.133–149, jun (2008).

Google Scholar

[12] J. Panyam and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue,, Advanced Drug Delivery Reviews, vol. 55, p.329–347, feb (2003).

DOI: 10.1016/s0169-409x(02)00228-4

Google Scholar

[13] M. Wu and S. Huang, Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment (Review),, Molecular and Clinical Oncology, vol. 7, p.738–746, nov (2017).

Google Scholar

[14] K. Ghule, A. V. Ghule, B.-J. Chen, and Y.-C. Ling, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study,, Green Chemistry, vol. 8, p.1034–1041, dec (2006).

DOI: 10.1039/b605623g

Google Scholar

[15] Y. N. Slavin, J. Asnis, U. O. Häfeli, and H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity,, Journal of Nanobiotechnology 2017 15:1, vol. 15, p.1–20, oct (2017).

DOI: 10.1186/s12951-017-0308-z

Google Scholar

[16] Aleš Panáček, Libor Kvítek, Robert Prucek, Milan Kolář, Renata Večeřová, Naděžda Pizúrová, Virender K. Sharma, Tat'jana Nevěčná, and R. Zbořil, Silver Colloid Nanoparticles:  Synthesis, Characterization, and Their Antibacterial Activity,, Journal of Physical Chemistry B, vol. 110, p.16248–16253, aug (2006).

DOI: 10.1021/jp063826h

Google Scholar

[17] M. R. Bindhu and M. Umadevi, Antibacterial and catalytic activities of green synthesized silver nanoparticles,, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 135, p.373–378, jan (2015).

DOI: 10.1016/j.saa.2014.07.045

Google Scholar

[18] S. Thangudu, S. S. Kulkarni, R. Vankayala, C.-S. Chiang, and K. C. Hwang, Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plas-monic core–shell Ag@AgCl nanocubes as an external nanomedicine,, Nanoscale, vol. 12, p.12970–12984, jun (2020).

DOI: 10.1039/d0nr01300e

Google Scholar

[19] C. Korupalli, P. Kalluru, K. Nuthalapati, N. Kuthala, S. Thangudu, and R. Vankayala, Recent Advances of Polyaniline-Based Biomaterials for Phototherapeutic Treatments of Tumors and Bacterial Infections,, Bioengineering 2020, Vol. 7, Page 94, vol. 7, p.94, aug (2020).

DOI: 10.3390/bioengineering7030094

Google Scholar

[20] Y. Mori, T. Ono, Y. Miyahira, V. Q. Nguyen, T. Matsui, and M. Ishihara, Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus,, Nanoscale Research Letters 2013 8:1, vol. 8, p.1–6, feb (2013).

DOI: 10.1186/1556-276x-8-93

Google Scholar

[21] S. Gaikwad, A. Ingle, A. Gade, M. Rai, A. Falanga, N. Incoronato, L. Russo, S. Galdiero, and M. Galdiero, Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3,, International Journal of Nanomedicine, vol. 8, p.4303–4314, nov (2013).

DOI: 10.2147/ijn.s50070

Google Scholar

[22] L. Chen and J. Liang, An overview of functional nanoparticles as novel emerging antiviral therapeutic agents,, Materials Science and Engineering: C, vol. 112, p.110924, jul (2020).

DOI: 10.1016/j.msec.2020.110924

Google Scholar

[23] S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, and M. Galdiero, Silver Nanoparticles as Potential Antiviral Agents,, Molecules 2011, Vol. 16, Pages 8894-8918, vol. 16, p.8894–8918, oct (2011).

DOI: 10.3390/molecules16108894

Google Scholar

[24] F. Wang, C. Li, L.-D. Sun, C.-H. Xu, J. Wang, J. C. Yu, and C.-H. Yan, Porous Single-Crystalline Palladium Nanoparticles with High Catalytic Activities,, Angewandte Chemie International Edition, vol. 51, p.4872–4876, may (2012).

DOI: 10.1002/anie.201107376

Google Scholar

[25] M. J. Ndolomingo, N. Bingwa, and R. Meijboom, Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts,, Journal of Materials Science 2020 55:15, vol. 55, p.6195–6241, feb (2020).

DOI: 10.1007/s10853-020-04415-x

Google Scholar

[26] B. Hvolbæk, T. V. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Nørskov, Catalytic activity of Au nanoparticles,, Nano Today, vol. 2, p.14–18, aug (2007).

DOI: 10.1016/s1748-0132(07)70113-5

Google Scholar

[27] Xiaohong Peng, Qinmin Pan, and G. L. Rempel, Bimetallic dendrimer -encapsulated nanoparticles as catalysts : a review of the research advances,, Chemical Society Reviews, vol. 37, p.1619–1628, jul (2008).

DOI: 10.1039/b716441f

Google Scholar

[28] S. Thangudu, C.-H. Wu, C.-H. Lee, and K. C. Hwang, Enhanced Photofixation of Dinitrogen to Ammonia over a Biomimetic Metal (Fe,Mo)-Doped Mesoporous MCM-41 Zeolite Catalyst under Ambient Conditions,, ACS Sustainable Chemistry & Engineering, vol. 9, p.8748–8758, jul (2021).

DOI: 10.1021/acssuschemeng.1c01208

Google Scholar

[29] R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K. S. Shivashangari, and V. Ravikumar, Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation,, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 121, p.746–750, mar (2014).

DOI: 10.1016/j.saa.2013.12.020

Google Scholar

[30] S. Marimuthu, A. J. Antonisamy, S. Malayandi, K. Rajendran, P. C. Tsai, A. Pugazhendhi, and V. K. Ponnusamy, Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxic-ity,, Journal of Photochemistry and Photobiology B: Biology, vol. 205, p.111823, apr (2020).

DOI: 10.1016/j.jphotobiol.2020.111823

Google Scholar

[31] G. K. Weldegebrieal, Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review,, Inorganic Chemistry Communications, vol. 120, p.108140, oct (2020).

DOI: 10.1016/j.inoche.2020.108140

Google Scholar

[32] S. Vasantharaj, S. Sathiyavimal, M. Saravanan, P. Senthilkumar, K. Gnanasekaran, M. Shanmugavel, E. Manikandan, and A. Pugazhendhi, Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential,, Journal of Photochemistry and Photobiology B: Biology, vol. 191, p.143–149, feb (2019).

DOI: 10.1016/j.jphotobiol.2018.12.026

Google Scholar

[33] F.-Y. Kong, J.-W. Zhang, R.-F. Li, Z.-X. Wang, W.-J. Wang, and W. Wang, Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications,, Molecules 2017, Vol. 22, Page 1445, vol. 22, p.1445, aug (2017).

DOI: 10.3390/molecules22091445

Google Scholar

[34] C. Tassa, S. Y. Shaw, and R. Weissleder, Dextran-Coated Iron Oxide Nanoparticles: A Versatile Platform for Targeted Molecular Imaging, Molecular Diagnostics, and Therapy,, Accounts of Chemical Research, vol. 44, p.842–852, oct (2011).

DOI: 10.1021/ar200084x

Google Scholar

[35] D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis,, Chemical Society Reviews, vol. 41, p.2656–2672, mar (2012).

DOI: 10.1039/c2cs15261d

Google Scholar

[36] S. K. Nune, P. Gunda, P. K. Thallapally, Y.-Y. Lin, M. L. Forrest, and C. J. Berkland, Nanoparticles for biomedical imaging,, http://dx.doi.org/10.1517/17425240903229031, vol. 6, p.1175–1194, nov (2009).

DOI: 10.1517/17425240903229031

Google Scholar

[37] R. Sankar, A. Karthik, A. Prabu, S. Karthik, K. S. Shivashangari, and V. Ravikumar, Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity,, Colloids and Surfaces B: Biointerfaces, vol. 108, p.80–84, aug (2013).

DOI: 10.1016/j.colsurfb.2013.02.033

Google Scholar

[38] M. P. Patil and G.-D. Kim, Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles,, Applied Microbiology and Biotechnology 2016 101:1, vol. 101, p.79–92, dec (2016).

DOI: 10.1007/s00253-016-8012-8

Google Scholar

[39] R. Sankar, R. Maheswari, S. Karthik, K. S. Shivashangari, and V. Ravikumar, Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.,, Materials Science & engineering. C, Materials for Biological Applications, vol. 44, p.234–239, aug (2014).

DOI: 10.1016/j.msec.2014.08.030

Google Scholar

[40] A. C. Gomathi, S. R. Xavier Rajarathinam, A. Mohammed Sadiq, and S. Rajeshkumar, Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line,, Journal of Drug Delivery Science and Technology, vol. 55, p.101376, feb (2020).

DOI: 10.1016/j.jddst.2019.101376

Google Scholar

[41] S. Thangudu, F.-Y. Cheng, and C.-H. Su, Advancements in the Blood–Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications,, Polymers 2020, Vol. 12, Page 3055, vol. 12, p.3055, dec (2020).

DOI: 10.3390/polym12123055

Google Scholar

[42] S. Thangudu, Next Generation Nanomaterials: Smart Nanomaterials, Significance, and Biomedical Applications,, Applications of Nanomaterials in Human Health, p.287–312, jan (2020).

DOI: 10.1007/978-981-15-4802-4_15

Google Scholar

[43] S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont, and J. C. Fernandes, Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve trans-fection efficacy,, European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, p.1–8, jan (2004).

DOI: 10.1016/s0939-6411(03)00155-3

Google Scholar

[44] J. Dobson, Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery,, Gene Therapy 2006 13:4, vol. 13, p.283–287, feb (2006).

DOI: 10.1038/sj.gt.3302720

Google Scholar

[45] F. Zheng, X. W. Shi, G. F. Yang, L. L. Gong, H. Y. Yuan, Y. J. Cui, Y. Wang, Y. M. Du, and Y. Li, Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: Results of an in vitro and in vivo study,, Life Sciences, vol. 80, p.388–396, jan (2007).

DOI: 10.1016/j.lfs.2006.09.040

Google Scholar

[46] S. Mansouri, Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, and J. C. Fernandes, Characterization of folate-chitosan-DNA nanoparticles for gene therapy,, Biomaterials, vol. 27, p.2060–2065, mar (2006).

DOI: 10.1016/j.biomaterials.2005.09.020

Google Scholar

[47] O. L. Gobbo, K. Sjaastad, M. W. Radomski, Y. Volkov, and A. Prina-Mello, Magnetic nanoparticles in cancer theranostics,, Theranostics, vol. 5, no. 11, p.1249–1263, (2015).

DOI: 10.7150/thno.11544

Google Scholar

[48] S. D. Hettiarachchi, Y. Zhou, E. Seven, M. K. Lakshmana, A. K. Kaushik, H. S. Chand, and R. M. Leblanc, Nanoparticle-mediated approaches for Alzheimer's disease pathogenesis, diagnosis, and therapeutics,, Journal of Controlled Release, vol. 314, p.125–140, nov (2019).

DOI: 10.1016/j.jconrel.2019.10.034

Google Scholar

[49] J. R. Kanwar, X. Sun, V. Punj, B. Sriramoju, R. R. Mohan, S. F. Zhou, A. Chauhan, and R. K. Kanwar, Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal,, Nanomedicine: Nanotechnology, Biology and Medicine, vol. 8, p.399–414, may (2012).

DOI: 10.1016/j.nano.2011.08.006

Google Scholar

[50] M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O'Regan, Emerging use of nanoparticles in diagnosis and treatment of breast cancer,, The Lancet Oncology, vol. 7, p.657–667, aug (2006).

DOI: 10.1016/s1470-2045(06)70793-8

Google Scholar

[51] A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease,, Molecular Pharmaceutics, vol. 10, p.831–847, mar (2013).

DOI: 10.1021/mp3005885

Google Scholar

[52] S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise,, Journal of Advanced Research, vol. 7, no. 1, p.17–28, (2016).

DOI: 10.1016/j.jare.2015.02.007

Google Scholar

[53] R. V. Rane, K. Meenakshi, M. Shah, and I. A. George, Biological synthesis of silver nanoparticles using Abelmoschus moschatus,, Indian Journal of Biotechnology, (2014).

Google Scholar

[54] F. Mafuné, J.-y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation,, The Journal of Physical Chemistry B, vol. 104, p.8336–8337, sep (2000).

DOI: 10.1021/jp001803b

Google Scholar

[55] J. H. Jung, H. Cheol Oh, H. Soo Noh, J. H. Ji, and S. Soo Kim, Metal nanoparticle generation using a small ceramic heater with a local heating area,, Journal of Aerosol Science, vol. 37, p.1662–1670, dec (2006).

DOI: 10.1016/j.jaerosci.2006.09.002

Google Scholar

[56] N. Tarasenko, A. Butsen, E. Nevar, and N. Savastenko, Synthesis of nanosized particles during laser ablation of gold in water,, Applied Surface Science, vol. 13, p.4439–4444, apr (2006).

DOI: 10.1016/j.apsusc.2005.07.150

Google Scholar

[57] Jean-Philippe Sylvestre, Andrei V. Kabashin, Edward Sacher, Michel Meunier, and John H. T. Luong, Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins,, Journal of the American Chemical Society, vol. 126, p.7176–7177, jun (2004).

DOI: 10.1021/ja048678s

Google Scholar

[58] G. A. Filip, B. Moldovan, I. Baldea, D. Olteanu, R. Suharoschi, N. Decea, C. M. Cismaru, E. Gal, M. Cenariu, S. Clichici, and L. David, UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation,, Journal of Photochemistry and Photobiology B: Biology, vol. 191, p.26–37, feb (2019).

DOI: 10.1016/j.jphotobiol.2018.12.006

Google Scholar

[59] V. A. Zuñiga-Ibarra, S. Shaji, B. Krishnan, J. Johny, S. Sharma Kanakkillam, D. A. Avellaneda, J. A. Martinez, T. K. Roy, and N. A. Ramos-Delgado, Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid,, Applied Surface Science, vol. 483, p.156–164, jul (2019).

DOI: 10.1016/j.apsusc.2019.03.302

Google Scholar

[60] J. E. Lemaster, A. S. Jeevarathinam, A. Kumar, B. Chandrasekar, F. Chen, and J. V. Jokerst, Synthesis of Ultrasmall Synthetic Melanin Nanoparticles by UV Irradiation in Acidic and Neutral Conditions,, ACS Applied Bio Materials, vol. 2, p.4667–4674, oct (2019).

DOI: 10.1021/acsabm.9b00747

Google Scholar

[61] R. Rahmawati, M. G. Permana, B. Harison, Nugraha, B. Yuliarto, Suyatman, and D. Kurniadi, Optimization of Frequency and Stirring Rate for Synthesis of Magnetite (Fe3O4) Nanoparticles by Using Coprecipitation- Ultrasonic Irradiation Methods,, Procedia Engineering, vol. 170, p.55–59, jan (2017).

DOI: 10.1016/j.proeng.2017.03.010

Google Scholar

[62] G. Zhang, B. Keita, A. Dolbecq, P. Mialane, F. Sécheresse, F. Miserque, and L. Nadjo, Green Chemistry-Type One-Step Synthesis of Silver Nanostructures Based on MoV–MoVI Mixed-Valence Polyoxometalates,, Chemistry of Materials, vol. 19, p.5821–5823, nov (2007).

DOI: 10.1021/cm7020142

Google Scholar

[63] Y. Zhang, H. Peng, W. Huang, Y. Zhou, and D. Yan, Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles,, Journal of Colloid and Interface Science, vol. 325, p.371–376, sep (2008).

DOI: 10.1016/j.jcis.2008.05.063

Google Scholar

[64] D. Kim, S. Jeong, and J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,, Nanotechnology, vol. 17, p.4019, jul (2006).

DOI: 10.1088/0957-4484/17/16/004

Google Scholar

[65] Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, H.-R. Zhang, J.-Q. Li, H.-L. Li, and H.-J. Gao, Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,, Nanotechnology, vol. 18, p.115608, feb (2007).

DOI: 10.1088/0957-4484/18/11/115608

Google Scholar

[66] H. Ma, B. Yin, S. Wang, Y. Jiao, W. Pan, S. Huang, S. Chen, and F. Meng, Synthesis of Silver and Gold Nanoparticles by a Novel Electrochemical Method,, ChemPhysChem, vol. 5, p.68–75, jan (2004).

DOI: 10.1002/cphc.200300900

Google Scholar

[67] Y. Zhang, F. Chen, J. Zhuang, Y. Tang, D. Wang, Y. Wang, A. Dong, and N. Ren, Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes,, Chemical Communications, vol. 2, p.2814–2815, jan (2002).

DOI: 10.1039/b208222e

Google Scholar

[68] H. Mohammad Shiri, A. Ehsani, and M. Jalali Khales, Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors,, Journal of Colloid and Interface Science, vol. 505, p.940–946, nov (2017).

DOI: 10.1016/j.jcis.2017.06.086

Google Scholar

[69] L. Rodríguez-Sánchez, M. C. Blanco, and M. A. López-Quintela, Electrochemical Synthesis of Silver Nanoparticles,, Journal of Physical Chemistry B, vol. 104, p.9683–9688, oct (2000).

DOI: 10.1021/jp001761r

Google Scholar

[70] M. Darroudi, A. Khorsand Zak, M. R. Muhamad, N. M. Huang, and M. Hakimi, Green synthesis of colloidal silver nanoparticles by sonochemical method,, Materials Letters, vol. 66, p.117–120, jan (2012).

DOI: 10.1016/j.matlet.2011.08.016

Google Scholar

[71] V. K. Yadav, D. Ali, S. H. Khan, G. Gnanamoorthy, N. Choudhary, K. K. Yadav, V. N. Thai, S. A. Hussain, and S. Manhrdas, Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater,, Nanomaterials 2020, Vol. 10, Page 1551, vol. 10, p.1551, aug (2020).

DOI: 10.3390/nano10081551

Google Scholar

[72] M. B. Muradov, O. O. Balayeva, A. A. Azizov, A. M. Maharramov, L. R. Qahramanli, G. M. Eyvazova, and Z. A. Aghamaliyev, Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method,, Infrared Physics & Technology, vol. 89, p.255–262, mar (2018).

DOI: 10.1016/j.infrared.2018.01.014

Google Scholar

[73] B. K. Sodipo and A. A. Aziz, One minute synthesis of amino-silane functionalized super-paramagnetic iron oxide nanoparticles by sonochemical method,, Ultrasonics Sonochemistry, vol. 40, p.837–840, jan (2018).

DOI: 10.1016/j.ultsonch.2017.08.040

Google Scholar

[74] E. E. Elemike, D. C. Onwudiwe, A. C. Ekennia, C. U. Sonde, and R. C. Ehiri, Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities,, Molecules, (2017).

DOI: 10.3390/molecules22050674

Google Scholar

[75] NHP, Introduction and Importance of Medicinal Plants and Herbs | National Health Portal of India,, National Health Portal of India, p.1–4, (2016).

Google Scholar

[76] E. Aleebrahim-Dehkordy, H. Nasri, A. Baradaran, P. Nasri, M. R. Tamadon, M. Hedaiaty, S. Beigrezaei, and M. Rafieian-Kopaei, Medicinal plants, effective plant compounds (Com-positions) and their effects on stomach cancer,, International Journal of Preventive Medicine, vol. 8, nov (2017).

DOI: 10.5530/jyp.2017.9.60

Google Scholar

[77] S. Abinaya, H. P. Kavitha, M. Prakash, and A. Muthukrishnaraj, Green synthesis of magnesium oxide nanoparticles and its applications: A review,, apr (2021).

DOI: 10.1016/j.scp.2020.100368

Google Scholar

[78] S. S. Bahri, Z. Harun, S. K. Hubadillah, W. N. W. Salleh, N. Rosman, N. H. Kamaruddin, F. H. Azhar, N. Sazali, R. A. R. Ahmad, and H. Basri, Review on recent advance biosynthesis of TiO2 nanoparticles from plant-mediated materials: characterization, mechanism and application,, IOP Conference Series: Materials Science and Engineering, vol. 1142, p.012005, apr (2021).

DOI: 10.1088/1757-899x/1142/1/012005

Google Scholar

[79] M. Herlekar, S. Barve, and R. Kumar, Plant-Mediated Green Synthesis of Iron Nanoparticles,, Journal of Nanoparticles, vol. 2014, p.1–9, oct (2014).

DOI: 10.1155/2014/140614

Google Scholar

[80] H. M. Fahmy, F. M. Mohamed, M. H. Marzouq, A. B. E.-D. Mustafa, A. M. Alsoudi, O. A. Ali, M. A. Mohamed, and F. A. Mahmoud, Review of Green Methods of Iron Nanoparticles Synthesis and Applications,, BioNanoScience 2018 8:2, vol. 8, p.491–503, mar (2018).

DOI: 10.1007/s12668-018-0516-5

Google Scholar

[81] A. Waris, M. Din, A. Ali, S. Afridi, A. Baset, A. U. Khan, and M. Ali, Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review,, Open Life Sciences, vol. 16, p.14–30, jan (2021).

DOI: 10.1515/biol-2021-0003

Google Scholar

[82] S. S. Sana, R. P. Singh, M. Sharma, A. K. Srivastava, G. Manchanda, A. R. Rai, and Z.-J. Zhang, Biogenesis and Application of Nickel Nanoparticles: A Review,, Current Pharmaceutical Biotechnology, vol. 22, p.808–822, jan (2021).

DOI: 10.2174/1389201022999210101235233

Google Scholar

[83] A. Ahmad Shad, Review of Green Synthesis and Antimicrobial Efficacy of Copper and Nickel Nanoparticles,, American Journal of Biomedical Science & Research, vol. 3, p.472–475, jul (2019).

DOI: 10.34297/ajbsr.2019.03.000721

Google Scholar

[84] P. Basnet, T. Inakhunbi Chanu, D. Samanta, and S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents,, Journal of Photochemistry and Photobiology B: Biology, vol. 183, p.201–221, jun (2018).

DOI: 10.1016/j.jphotobiol.2018.04.036

Google Scholar

[85] S. Akbar, I. Tauseef, F. Subhan, N. Sultana, I. Khan, U. Ahmed, and K. S. Haleem, An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential,, https://doi.org/10.1080/24701556.2019.1711121, vol. 50, p.257–271, apr (2020).

DOI: 10.1080/24701556.2019.1711121

Google Scholar

[86] M. Ikram, B. Javed, N. I. Raja, and Z.-u.-R. Mashwani, <p>Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects</p>,, International Journal of Nanomedicine, vol. 16, p.249–268, jan (2021).

DOI: 10.2147/ijn.s295053

Google Scholar

[87] P. Vishnukumar, S. Vivekanandhan, and S. Muthuramkumar, Plant-Mediated Biogenic Synthesis of Palladium Nanoparticles: Recent Trends and Emerging Opportunities,, ChemBioEng Reviews, vol. 4, p.18–36, feb (2017).

DOI: 10.1002/cben.201600017

Google Scholar

[88] S. A. Fahmy, E. Preis, U. Bakowsky, and H. M. E.-S. Azzazy, Palladium Nanoparticles Fabricated by Green Chemistry: Promising Chemotherapeutic, Antioxidant and Antimicrobial Agents,, Materials 2020, Vol. 13, Page 3661, vol. 13, p.3661, aug (2020).

DOI: 10.3390/ma13173661

Google Scholar

[89] C. G. Das, V. G. Kumar, T. S. Dhas, V. Karthick, K. Govindaraju, J. M. Joselin, and J. Baalamurugan, Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances,, Biocatalysis and Agricultural Biotechnology, vol. 27, p.101593, aug (2020).

DOI: 10.1016/j.bcab.2020.101593

Google Scholar

[90] G. Benelli, Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review,, Parasitology Research 2015 115:1, vol. 115, p.23–34, nov (2015).

DOI: 10.1007/s00436-015-4800-9

Google Scholar

[91] K. S. Siddiqi, A. Husen, and R. A. K. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties,, Journal of Nanobiotechnology 2018 16:1, vol. 16, p.1–28, feb (2018).

DOI: 10.1186/s12951-018-0334-5

Google Scholar

[92] I.-M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, and G. Rajakumar, Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applica-tions,, Nanoscale Research Letters 2016 11:1, vol. 11, p.1–14, jan (2016).

DOI: 10.1186/s11671-016-1257-4

Google Scholar

[93] M. Ismail, S. Gul, M. A. Khan, and M. I. Khan, Plant Mediated Green Synthesis of Anti-Microbial Silver Nanoparticles—A Review on Recent Trends,, Reviews in Nanoscience and Nanotechnology, vol. 5, p.119–135, oct (2018).

DOI: 10.1166/rnn.2016.1073

Google Scholar

[94] S. Rajeshkumar and L. V. Bharath, Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity,, Chemico-Biological Interactions, vol. 273, p.219–227, aug (2017).

DOI: 10.1016/j.cbi.2017.06.019

Google Scholar

[95] R. H. Ahmed and D. E. Mustafa, Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan,, International Nano Letters, vol. 10, p.1–14, mar (2020).

DOI: 10.1007/s40089-019-00291-9

Google Scholar

[96] Y. T. Gebreslassie and H. G. Gebretnsae, Green and Cost-Effective Synthesis of Tin Oxide Nanoparticles: A Review on the Synthesis Methodologies, Mechanism of Formation, and Their Potential Applications,, Nanoscale Research Letters 2021 16:1, vol. 16, p.1–16, may (2021).

DOI: 10.1186/s11671-021-03555-6

Google Scholar

[97] S. Rajeshkumar and P. Naik, Synthesis and biomedical applications of Cerium oxide nanoparticles – A Review,, Biotechnology Reports, vol. 17, p.1–5, mar (2018).

DOI: 10.1016/j.btre.2017.11.008

Google Scholar

[98] A. Dhall and W. Self, Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications,, Antioxidants 2018, Vol. 7, Page 97, vol. 7, p.97, jul (2018).

DOI: 10.3390/antiox7080097

Google Scholar

[99] A. Naseer, A. Ali, S. Ali, A. Mahmood, H. S. Kusuma, A. Nazir, M. Yaseen, M. I. Khan, A. Ghaffar, M. Abbas, and M. Iqbal, Biogenic and eco-benign synthesis of platinum nanoparticles (Pt NPs) using plants aqueous extracts and biological derivatives: environmental, biological and catalytic applications,, Journal of Materials Research and Technology, vol. 9, p.9093–9107, jul (2020).

DOI: 10.1016/j.jmrt.2020.06.013

Google Scholar

[100] S. A. Fahmy, E. Preis, U. Bakowsky, and H. M. E.-S. Azzazy, Platinum Nanoparticles: Green Synthesis and Biomedical Applications,, Molecules 2020, Vol. 25, Page 4981, vol. 25, p.4981, oct (2020).

DOI: 10.3390/molecules25214981

Google Scholar

[101] M. Nadeem, B. H. Abbasi, M. Younas, W. Ahmad, and T. Khan, A review of the green syntheses and anti-microbial applications of gold nanoparticles,, http://mc.manuscriptcentral.com/tgcl, vol. 10, p.216–227, oct (2017).

DOI: 10.1080/17518253.2017.1349192

Google Scholar

[102] K. Kalimuthu, B. S. Cha, S. Kim, and K. S. Park, Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review,, Microchemical Journal, vol. 152, p.104296, jan (2020).

DOI: 10.1016/j.microc.2019.104296

Google Scholar

[103] K. Vijayaraghavan and T. Ashokkumar, Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications,, Journal of Environmental Chemical Engineering, vol. 5, p.4866–4883, oct (2017).

DOI: 10.1016/j.jece.2017.09.026

Google Scholar

[104] N. Kulkarni and U. Muddapur, Biosynthesis of metal nanoparticles: A review,, Journal of Nanotechnology, vol. 2014, (2014).

Google Scholar

[105] J. A. Hernández-Díaz, J. J. Garza-García, A. Zamudio-Ojeda, J. M. León-Morales, J. C. López-Velázquez, and S. García-Morales, Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens,, Journal of the Science of Food and Agriculture, vol. 101, p.1270–1287, mar (2021).

DOI: 10.1002/jsfa.10767

Google Scholar

[106] V. Kumar and S. K. Yadav, Plant-mediated synthesis of silver and gold nanoparticles and their applications,, Journal of Chemical Technology & Biotechnology, vol. 84, p.151–157, feb (2009).

DOI: 10.1002/jctb.2023

Google Scholar

[107] N. A. Hanan, H. I. Chiu, M. R. Ramachandran, W. H. Tung, N. N. Mohamad Zain, N. Yahaya, and V. Lim, Cytotoxicity of plant-mediated synthesis of metallic nanoparticles: A systematic review,, International Journal of Molecular Sciences, vol. 19, jun (2018).

DOI: 10.3390/ijms19061725

Google Scholar

[108] S. Jadoun, R. Arif, N. K. Jangid, and R. K. Meena, Green synthesis of nanoparticles using plant extracts: a review,, Environmental Chemistry Letters 2020 19:1, vol. 19, p.355–374, aug (2020).

DOI: 10.1007/s10311-020-01074-x

Google Scholar

[109] R. Perumal Samy, S. Ignacimuthu, and A. Sen, Screening of 34 Indian medicinal plants for antibacterial properties,, Journal of Ethnopharmacology, (1998).

DOI: 10.1016/s0378-8741(98)00057-9

Google Scholar

[110] R. Dabur, H. Singh, A. K. Chhillar, M. Ali, and G. L. Sharma, Antifungal potential of Indian medicinal plants,, Fitoterapia, (2004).

DOI: 10.1016/j.fitote.2004.01.015

Google Scholar

[111] M. I. Alam and A. Gomes, Snake venom neutralization by Indian medicinal plants (Vitex ne-gundo and Emblica officinalis) root extracts,, Journal of Ethnopharmacology, (2003).

DOI: 10.1016/s0378-8741(03)00049-7

Google Scholar

[112] G. Balasubramanian, M. Sarathi, S. R. Kumar, and A. S. Hameed, Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp,, Aquaculture, (2007).

DOI: 10.1016/j.aquaculture.2006.09.037

Google Scholar

[113] R. Padmaja, P. C. Arun, D. Prashanth, M. Deepak, A. Amit, and M. Anjana, Brine shrimp lethality bioassay of selected Indian medicinal plants,, Fitoterapia, vol. 73, p.508–510, oct (2002).

DOI: 10.1016/s0367-326x(02)00182-x

Google Scholar

[114] A. Pandey and S. Tripathi, Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug,, Journal of Pharmacogosy and Phytochemistry, vol. 2, no. 5, p.115–119, (2014).

Google Scholar

[115] Y. M. Siaw, J. Jeevanandam, Y. S. Hii, and Y. S. Chan, Photo-irradiation coupled biosynthesis of magnesium oxide nanoparticles for antibacterial application," Naunyn-Schmiedeberg,s Archives of Pharmacology 2020 393:12, vol. 393, p.2253–2264, jul (2020).

DOI: 10.1007/s00210-020-01934-x

Google Scholar

[116] J. Suresh, R. Yuvakkumar, M. Sundrarajan, and S. I. Hong, Green synthesis of magnesium oxide nanoparticles,, in Advanced Materials Research, vol. 952, p.141–144, (2014).

DOI: 10.4028/www.scientific.net/amr.952.141

Google Scholar

[117] B. Das, S. Moumita, S. Ghosh, M. I. Khan, D. Indira, R. Jayabalan, S. K. Tripathy, A. Mishra, and P. Balasubramanian, Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus,, Materials Science and Engineering: C, vol. 91, p.436–444, oct (2018).

DOI: 10.1016/j.msec.2018.05.059

Google Scholar

[118] G. Sharma, R. Soni, . Nakuleshwar, D. Jasuja, and N. Dut Jasuja, Phytoassisted synthesis of magnesium oxide nanoparticles with Swertiaï¿¿chirayaita,, Journal of Taibah University for Science, vol. 11, p.471–477, may (2017).

DOI: 10.1016/j.jtusci.2016.09.004

Google Scholar

[119] H. Maishera, F. Kuta, J. Tijani, N. Adabara, A. Adedeji, and J. Bala, Biosynthesis and antibacterial potential of tectona grandis mediated magnesium oxide nanorods.,, Journal of Bio-Science, vol. 27, p.109–120, dec (2019).

DOI: 10.3329/jbs.v27i0.44676

Google Scholar

[120] S. Joghee, P. Ganeshan, A. Vincent, and S. I. Hong, Ecofriendly Biosynthesis of Zinc Oxide and Magnesium Oxide Particles from Medicinal Plant Pisonia grandis R.Br. Leaf Extract and Their Antimicrobial Activity,, BioNanoScience 2018 9:1, vol. 9, p.141–154, nov (2018).

DOI: 10.1007/s12668-018-0573-9

Google Scholar

[121] A. Parveen, M. E. Khan, and A. Almontasser, Biosynthesis of magnesium fluoride nanoparticles and its anticandidal activity,, AIP Conference Proceedings, vol. 2220, p.020045, may (2020).

DOI: 10.1063/5.0001161

Google Scholar

[122] D. T. C. Nguyen, H. H. Dang, D. V. N. Vo, L. G. Bach, T. D. Nguyen, and T. V. Tran, Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment,, Journal of Hazardous Materials, vol. 404, p.124146, feb (2021).

DOI: 10.1016/j.jhazmat.2020.124146

Google Scholar

[123] J. Jeevanandam, Y. S. Chan, and M. K. Danquah, Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation,, New Journal of Chemistry, vol. 41, p.2800–2814, mar (2017).

DOI: 10.1039/c6nj03176e

Google Scholar

[124] R. Dobrucka, Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties,, Iranian Journal of Science and Technology, Transactions A: Science 2016 42:2, vol. 42, p.547–555, sep (2016).

DOI: 10.1007/s40995-016-0076-x

Google Scholar

[125] P. Rani, G. Kaur, K. V. Rao, J. Singh, and M. Rawat, Impact of Green Synthesized Metal Ox-ide Nanoparticles on Seed Germination and Seedling Growth of Vigna radiata (Mung Bean) and Cajanus cajan (Red Gram),, Journal of Inorganic and Organometallic Polymers and Materials 2020 30:10, vol. 30, p.4053–4062, apr (2020).

DOI: 10.1007/s10904-020-01551-4

Google Scholar

[126] J. Jeevanandam, Y. S. Chan, and Y. H. Ku, Aqueous Eucalyptus globulus leaf extract-mediated biosynthesis of MgO nanorods,, Applied Biological Chemistry, vol. 61, p.197–208, apr (2018).

DOI: 10.1007/s13765-018-0347-7

Google Scholar

[127] L. Umaralikhan and M. Jamal Mohamed Jaffar, Green Synthesis of MgO Nanoparticles and it Antibacterial Activity,, Iranian Journal of Science and Technology, Transactions A: Science 2016 42:2, vol. 42, p.477–485, jun (2016).

DOI: 10.1007/s40995-016-0041-8

Google Scholar

[128] R. Tripathi, R. P. Rao, and T. Tsuzuki, Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water,, RSC Advances, vol. 8, p.36345–36352, oct (2018).

DOI: 10.1039/c8ra07845a

Google Scholar

[129] N. M. Salem, L. S. Albanna, and A. M. Awwad, Green synthesis of sulfur nanoparticles using Punica granatum peels and the effects on the growth of tomato by foliar spray applications,, Environmental Nanotechnology, Monitoring & Management, vol. 6, p.83–87, dec (2016).

DOI: 10.1016/j.enmm.2016.06.006

Google Scholar

[130] S. Najafi, S. M. Razavi, M. Khoshkam, and A. Asadi, Effects of green synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical factors of Lettuce (Lactuca sativa),, Physiology and Molecular Biology of Plants, vol. 26, p.1055–1066, may (2020).

DOI: 10.1007/s12298-020-00793-3

Google Scholar

[131] N. M. Salem, L. S. Albanna, A. M. Awwad, Q. M. Ibrahim, and A. O. Abdeen, Green Synthesis of Nano-Sized Sulfur and Its Effect on Plant Growth,, Journal of Agricultural Science, vol. 8, no. 1, p.188, (2015).

DOI: 10.5539/jas.v8n1p188

Google Scholar

[132] G. A. Ragab and K. M. Saad-Allah, Green synthesis of sulfur nanoparticles using Ocimum basilicum leaves and its prospective effect on manganese-stressed Helianthus annuus (L.) seedlings,, Ecotoxicology and Environmental Safety, vol. 191, mar (2020).

DOI: 10.1016/j.ecoenv.2020.110242

Google Scholar

[133] A. M. Awwad, N. M. Salem, and A. O. Abdeen, Noval approach for synthesis sulfur (S-NPs) nanoparticles using Albizia julibrissin fruits extract,, Advanced Materials Letters, vol. 6, no. 5, p.432–435, (2015).

DOI: 10.5185/amlett.2015.5792

Google Scholar

[134] S. Marimuthu, A. A. Rahuman, C. Jayaseelan, A. V. Kirthi, T. Santhoshkumar, K. Velayutham, A. Bagavan, C. Kamaraj, G. Elango, M. Iyappan, C. Siva, L. Karthik, and K. V. B. Rao, Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa,, Asian Pacific Journal of Tropical Medicine, vol. 6, p.682–688, sep (2013).

DOI: 10.1016/s1995-7645(13)60118-2

Google Scholar

[135] K. Velayutham, A. A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu, C. Jayaseelan, A. Bagavan, A. V. Kirthi, C. Kamaraj, A. A. Zahir, and G. Elango, Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparti-cles against Hippobosca maculata and Bovicola ovis,, Parasitology Research, vol. 111, p.2329–2337, dec (2012).

DOI: 10.1007/s00436-011-2676-x

Google Scholar

[136] G. Rajakumar, A. A. Rahuman, S. M. Roopan, I. M. Chung, K. Anbarasan, and V. Karthikeyan, Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites,, Parasitology Research, vol. 114, no. 2, p.571–581, (2015).

DOI: 10.1007/s00436-014-4219-8

Google Scholar

[137] G. Rajakumar, A. A. Rahuman, C. Jayaseelan, T. Santhoshkumar, S. Marimuthu, C. Kamaraj, A. Bagavan, A. A. Zahir, A. V. Kirthi, G. Elango, P. Arora, R. Karthikeyan, S. Manikandan, and S. Jose, Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles sub-pictus,, Parasitology Research, vol. 113, p.469–479, feb (2014).

DOI: 10.1007/s00436-013-3676-9

Google Scholar

[138] S. Subhapriya and P. Gomathipriya, Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties,, Microbial Pathogene-sis, vol. 116, p.215–220, mar (2018).

DOI: 10.1016/j.micpath.2018.01.027

Google Scholar

[139] A. Chatterjee, M. Ajantha, A. Talekar, N. Revathyr, and J. Abraham, Biosynthesis, Antimicro-bial and Cytotoxic Effects of Titanium Dioxide Nanoparticles Using Vigna unguiculata Seeds,, International Journal of Pharmacognosy and Phytochemical Research, vol. 9, jan (2017).

DOI: 10.25258/ijpapr.v9i1.8047

Google Scholar

[140] R. Dobrucka, Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba,, Iranian Journal of Pharmaceutical Research, vol. 16, p.753–759, mar (2017).

Google Scholar

[141] G. Rajakumar, A. A. Rahuman, B. Priyamvada, V. G. Khanna, D. K. Kumar, and P. J. Sujin, Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles,, Materials Letters, vol. 68, p.115–117, feb (2012).

DOI: 10.1016/j.matlet.2011.10.038

Google Scholar

[142] M. Nasrollahzadeh and S. M. Sajadi, Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability,, Ceramics International, vol. 41, p.14435–14439, dec (2015).

DOI: 10.1016/j.ceramint.2015.07.079

Google Scholar

[143] M. Sundrarajan and S. Gowri, Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract,, Chalcogenide Letters, vol. 8, no. 8, p.447–451, (2011).

Google Scholar

[144] R. R. Chavan, S. D. Bhinge, M. A. Bhutkar, D. S. Randive, G. H. Wadkar, S. S. Todkar, and M. N. Urade, Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract,, Materials Today Communications, vol. 24, p.101320, sep (2020).

DOI: 10.1016/j.mtcomm.2020.101320

Google Scholar

[145] Y. Vitta, M. Figueroa, M. Calderon, and C. Ciangherotti, Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial ac-tivity,, Materials Science for Energy Technologies, vol. 3, p.97–103, jan (2020).

DOI: 10.1016/j.mset.2019.10.014

Google Scholar

[146] E. Da'na, A. Taha, and E. Afkar, Green Synthesis of Iron Nanoparticles by Acacia nilotica Pods Extract and Its Catalytic, Adsorption, and Antibacterial Activities,, Applied Sciences 2018, Vol. 8, Page 1922, vol. 8, p.1922, oct (2018).

DOI: 10.3390/app8101922

Google Scholar

[147] A. Zangeneh, M. M. Zangeneh, and R. Moradi, Ethnomedicinal plant-extract-assisted green synthesis of iron nanoparticles using Allium saralicum extract, and their antioxidant, cytotoxicity, antibacterial, antifungal and cutaneous wound-healing activities,, Applied Organometallic Chemistry, vol. 34, p. e5247, jan (2020).

DOI: 10.1002/aoc.5247

Google Scholar

[148] S. Groiss, R. Selvaraj, T. Varadavenkatesan, and R. Vinayagam, Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora,, JMoSt, vol. 1128, p.572–578, jan (2017).

DOI: 10.1016/j.molstruc.2016.09.031

Google Scholar

[149] M. Balamurugan, S. Saravanan, and T. Soga, Synthesis of iron oxide nanoparticles by using eucalyptus globulus plant extract,, e-Journal of Surface Science and Nanotechnology, vol. 12, p.363–367, aug (2014).

DOI: 10.1380/ejssnt.2014.363

Google Scholar

[150] A. U. Mirza, A. Kareem, S. A. Nami, M. S. Khan, S. Rehman, S. A. Bhat, A. Mohammad, and N. Nishat, Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity,, Journal of Photochemistry and Photobiology B: Biology, vol. 185, p.262–274, aug (2018).

DOI: 10.1016/j.jphotobiol.2018.06.009

Google Scholar

[151] L. Katata-Seru, T. Moremedi, O. S. Aremu, and I. Bahadur, Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli,, Journal of Molecular Liquids, vol. 256, p.296–304, apr (2018).

DOI: 10.1016/j.molliq.2017.11.093

Google Scholar

[152] I. M. Lourenço, J. C. Pieretti, M. H. M. Nascimento, C. B. Lombello, and A. B. Seabra, Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines,, Energy, Ecology and Environment 2019 4:6, vol. 4, p.261–270, sep (2019).

DOI: 10.1007/s40974-019-00134-5

Google Scholar

[153] N. Beheshtkhoo, M. A. J. Kouhbanani, A. Savardashtaki, A. M. Amani, and S. Taghizadeh, Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material,, Applied Physics A: Materials Science and Processing, vol. 124, may (2018).

DOI: 10.1007/s00339-018-1782-3

Google Scholar

[154] H. K. Farshchi, M. Azizi, M. R. Jaafari, S. H. Nemati, and A. Fotovat, Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines,, Bio-catalysis and Agricultural Biotechnology, vol. 16, p.54–62, oct (2018).

DOI: 10.1016/j.bcab.2018.07.017

Google Scholar

[155] C. Xiao, H. Li, Y. Zhao, X. Zhang, and X. Wang, Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes,, Journal of Environmental Management, vol. 275, p.111262, dec (2020).

DOI: 10.1016/j.jenvman.2020.111262

Google Scholar

[156] M. Yuan, X. Fu, J. Yu, Y. Xu, J. Huang, Q. Li, and D. Sun, Green synthesized iron nanoparticles as highly efficient fenton-like catalyst for degradation of dyes,, Chemosphere, vol. 261, dec (2020).

DOI: 10.1016/j.chemosphere.2020.127618

Google Scholar

[157] V. J. Garole, B. C. Choudhary, S. R. Tetgure, D. J. Garole, and A. U. Borse, Detoxification of toxic dyes using biosynthesized iron nanoparticles by photo-Fenton processes,, International Journal of Environmental Science and Technology, vol. 15, p.1649–1656, aug (2018).

DOI: 10.1007/s13762-017-1510-0

Google Scholar

[158] B. Desalegn, M. Megharaj, Z. Chen, and R. Naidu, Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS,, Heliyon, vol. 5, may (2019).

DOI: 10.1016/j.heliyon.2019.e01750

Google Scholar

[159] E. C. Njagi, H. Huang, L. Stafford, H. Genuino, H. M. Galindo, J. B. Collins, G. E. Hoag, and S. L. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts,, Langmuir, vol. 27, p.264–271, jan (2011).

DOI: 10.1021/la103190n

Google Scholar

[160] M. A. J. Kouhbanani, N. Beheshtkhoo, S. Taghizadeh, A. M. Amani, and V. Alimardani, One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation,, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, feb (2019).

DOI: 10.1088/2043-6254/aafe74

Google Scholar

[161] Z. Pan, Y. Lin, B. Sarkar, G. Owens, and Z. Chen, Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal,, Journal of Colloid and Interface Science, vol. 558, p.106–114, dec (2019).

DOI: 10.1016/j.jcis.2019.09.106

Google Scholar

[162] A. S. Prasad, Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea),, Materials Science in Semiconductor Processing, vol. 53, p.79–83, oct (2016).

DOI: 10.1016/j.mssp.2016.06.009

Google Scholar

[163] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, and R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,, Advanced Powder Technology, vol. 28, p.122–130, jan (2017).

DOI: 10.1016/j.apt.2016.09.003

Google Scholar

[164] M. Hafeez, R. Shaheen, B. Akram, Z. ul Abdin, S. Haq, S. Mahsud, S. Ali, and R. T. Khan, Green synthesis of cobalt oxide nanoparticles for potential biological applications,, Materials Research Express, vol. 7, p.025019, feb (2020).

DOI: 10.1088/2053-1591/ab70dd

Google Scholar

[165] T. Shahzadi, M. Zaib, T. Riaz, S. Shehzadi, M. A. Abbasi, and M. Shahid, Synthesis of Eco-friendly Cobalt Nanoparticles Using Celosia argentea Plant Extract and Their Efficacy Studies as Antioxidant, Antibacterial, Hemolytic and Catalytical Agent,, Arabian Journal for Science and Engineering 2019 44:7, vol. 44, p.6435–6444, may (2019).

DOI: 10.1007/s13369-019-03937-0

Google Scholar

[166] A. T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. K. Shinwari, and M. Maaza, Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.),, Arabian Journal of Chemistry, vol. 13, p.606–619, jan (2020).

DOI: 10.1016/j.arabjc.2017.07.004

Google Scholar

[167] I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman, and M. Abbas, Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity,, Advanced Powder Technology, vol. 28, p.2035–2043, sep (2017).

DOI: 10.1016/j.apt.2017.05.008

Google Scholar

[168] M. S. Samuel, E. Selvarajan, T. Mathimani, N. Santhanam, T. N. Phuong, K. Brindhadevi, and A. Pugazhendhi, Green synthesis of cobalt-oxide nanoparticle using jumbo Muscadine (Vitis rotundifolia): Characterization and photo-catalytic activity of acid Blue-74,, Journal of Photo-chemistry and Photobiology B: Biology, vol. 211, oct (2020).

DOI: 10.1016/j.jphotobiol.2020.112011

Google Scholar

[169] A. Diallo, A. C. Beye, T. B. Doyle, E. Park, and M. Maaza, Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties,, oct (2015).

DOI: 10.1080/17518253.2015.1082646

Google Scholar

[170] N. Akhlaghi, G. Najafpour-Darzi, and H. Younesi, Facile and green synthesis of cobalt oxide nanoparticles using ethanolic extract of Trigonella foenumgraceum (Fenugreek) leaves,, Advanced Powder Technology, vol. 31, p.3562–3569, aug (2020).

DOI: 10.1016/j.apt.2020.07.004

Google Scholar

[171] A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, and L. J. Kennedy, Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical ap-plications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells,, Journal of Photo-chemistry and Photobiology B: Biology, vol. 164, p.352–360, nov (2016).

DOI: 10.1016/j.jphotobiol.2016.10.003

Google Scholar

[172] S. Srihasam, K. Thyagarajan, M. Korivi, V. R. Lebaka, and S. P. R. Mallem, Phytogenic Gen-eration of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties,, Biomolecules 2020, Vol. 10, Page 89, vol. 10, p.89, jan (2020).

DOI: 10.3390/biom10010089

Google Scholar

[173] S. Uddin, L. B. Safdar, S. Anwar, J. Iqbal, S. Laila, B. A. Abbasi, M. S. Saif, M. Ali, A. Rehman, A. Basit, Y. Wang, and U. M. Quraishi, Green Synthesis of Nickel Oxide Nanoparticles from Berberis balochistanica Stem for Investigating Bioactivities,, Molecules 2021, Vol. 26, Page 1548, vol. 26, p.1548, mar (2021).

DOI: 10.3390/molecules26061548

Google Scholar

[174] P. Kganyago, L. M. Mahlaule-Glory, M. M. Mathipa, B. Ntsendwana, N. Mketo, Z. Mbita, and N. C. Hintsho-Mbita, Synthesis of NiO nanoparticles via a green route using Monsonia burkeana: The physical and biological properties,, Journal of Photochemistry and Photobiology B: Biology, vol. 182, p.18–26, may (2018).

DOI: 10.1016/j.jphotobiol.2018.03.016

Google Scholar

[175] J. Iqbal, B. A. Abbasi, R. Ahmad, M. Mahmoodi, A. Munir, S. A. Zahra, A. Shahbaz, M. Shaukat, S. Kanwal, S. Uddin, T. Mahmood, and R. Capasso, Phytogenic Synthesis of Nickel Oxide Nanoparticles (NiO) Using Fresh Leaves Extract of Rhamnus triquetra (Wall.) and Investigation of Its Multiple In Vitro Biological Potentials,, Biomedicines 2020, Vol. 8, Page 117, vol. 8, p.117, may (2020).

DOI: 10.3390/biomedicines8050117

Google Scholar

[176] I. Bibi, S. Kamal, A. Ahmed, M. Iqbal, S. Nouren, K. Jilani, N. Nazar, M. Amir, A. Abbas, S. Ata, and F. Majid, Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation,, International Journal of Biological Macromolecules, vol. 103, p.783–790, oct (2017).

DOI: 10.1016/j.ijbiomac.2017.05.023

Google Scholar

[177] C. J. Pandian, R. Palanivel, and S. Dhananasekaran, Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption,, Chinese Journal of Chemical Engineering, vol. 23, p.1307–1315, aug (2015).

DOI: 10.1016/j.cjche.2015.05.012

Google Scholar

[178] G. Elango, S. M. Roopan, K. I. Dhamodaran, K. Elumalai, N. A. Al-Dhabi, and M. V. Arasu, Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities,, Journal of Photochemistry and Photobiology B: Biology, vol. 162, p.162–167, sep (2016).

DOI: 10.1016/j.jphotobiol.2016.06.045

Google Scholar

[179] F. T. Thema, E. Manikandan, A. Gurib-Fakim, and M. Maaza, Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract,, Journal of Alloys and Compounds, vol. 657, p.655–661, feb (2016).

DOI: 10.1016/j.jallcom.2015.09.227

Google Scholar

[180] V. Helan, J. J. Prince, N. A. Al-Dhabi, M. V. Arasu, A. Ayeshamariam, G. Madhumitha, S. M. Roopan, and M. Jayachandran, Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis,, Results in Physics, vol. 6, p.712–718, jan (2016).

DOI: 10.1016/j.rinp.2016.10.005

Google Scholar

[181] H. Chen, J. Wang, D. Huang, X. Chen, J. Zhu, D. Sun, J. Huang, and Q. Li, Plant-mediated synthesis of size-controllable Ni nanoparticles with alfalfa extract,, Materials Letters, vol. 122, p.166–169, may (2014).

DOI: 10.1016/j.matlet.2014.02.028

Google Scholar

[182] J. Karimi and S. Mohsenzadeh, Rapid, green, and eco-friendly biosynthesis of copper nanopar-ticles using flower extract of Aloe vera,, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 45, no. 6, p.895–898, (2015).

DOI: 10.1080/15533174.2013.862644

Google Scholar

[183] D. Nagaonkar, S. Shende, and M. Rai, Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa,, Biotechnology Progress, vol. 31, no. 2, p.557–565, (2015).

DOI: 10.1002/btpr.2040

Google Scholar

[184] M. Nasrollahzadeh, M. Sajjadi, and S. Mohammad Sajadi, Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella asiatica L. leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes,, Cuihua Xuebao/Chinese Journal of Catalysis, vol. 39, p.109–117, jan (2018).

DOI: 10.1016/s1872-2067(17)62915-2

Google Scholar

[185] K. Saranyaadevi, V. Subha, R. S. Ernest Ravindran, and S. Renganathan, Synthesis and characterization of copper nanoparticle using capparis zeylanicaleaf extract,, International Journal of ChemTech Research, vol. 6, no. 10, p.4533–4541, (2014).

Google Scholar

[186] S. Shende, A. P. Ingle, A. Gade, and M. Rai, Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity,, World Journal of Microbiology and Biotechnology, vol. 31, p.865–873, apr (2015).

DOI: 10.1007/s11274-015-1840-3

Google Scholar

[187] H. J. Lee, J. Y. Song, and B. S. Kim, Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity,, Journal of Chemical Technology and Biotechnology, vol. 88, no. 11, p.1971–1977, (2013).

DOI: 10.1002/jctb.4052

Google Scholar

[188] B. H. Patel, M. Z. Channiwala, S. B. Chaudhari, and A. A. Mandot, Biosynthesis of copper nanoparticles; Its characterization and efficacy against human pathogenic bacterium,, Journal of Environmental Chemical Engineering, vol. 4, p.2163–2169, jun (2016).

DOI: 10.1016/j.jece.2016.03.046

Google Scholar

[189] G. Caroling, E. Vinodhini, A. M. Ranjitham, and P. Shanthi, Biosynthesis of Copper Nanopar-ticles Using Aqueous Phyllanthus Embilica ( Gooseberry ) Extract- Characterisation and Study of Antimicrobial Effects,, International Journal of Nanomaterials and Chemistry, vol. 63, no. 2, p.53–63, (2015).

Google Scholar

[190] G. Caroling, M. N. Priyadharshini, E. Vinodhini, A. M. Ranjitham, and P. Shanthi, Biosynthe-sis of Copper Nanoparticles Using Aqueous Guava Extract– Characterisation and Study of An-tibacterial Effects,, International Journal of Pharmacy and Biological Sciences, vol. 5, no. 2, p.25–43, (2015).

Google Scholar

[191] H. Alishah, S. Pourseyedi, S. Y. Ebrahimipour, S. E. Mahani, and N. Rafiei, Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line,, Rendiconti Lincei, vol. 28, p.65–71, mar (2017).

DOI: 10.1007/s12210-016-0574-y

Google Scholar

[192] J. K. V. M. Angrasan and R. Subbaiya, Biosynthesis of Copper Nanoparticles by Vitis vinifera Leaf aqueous extract and its Antibacterial Activity,, Int.J.Curr.Microbiol.App.Sci, vol. 3, no. 9, p.768–774, (2014).

Google Scholar

[193] I. Subhankari and P. L. Nayak, Antimicrobial Activity of Copper Nanoparticles Synthesised by Ginger (Zingiber officinale) Extract,, World Journal of Nano Science & Technology, vol. 2, no. 1, p.10–13, (2013).

Google Scholar

[194] S. Harne, A. Sharma, M. Dhaygude, S. Joglekar, K. Kodam, and M. Hudlikar, Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells,, Colloids and Surfaces B: Biointerfaces, vol. 95, p.284–288, jun (2012).

DOI: 10.1016/j.colsurfb.2012.03.005

Google Scholar

[195] S. A. David, S. I. Rajadurai, and S. V. Kumar, Biosynthesis of copper oxide nanoparticles using Momordica charantia leaf extract and their characterization,, International Journal of Advance Research in Science and Engineering, vol. 6, no. 3, p.313–320, (2017).

Google Scholar

[196] N. Tiwari, R. Pandit, S. Gaikwad, A. Gade, and M. Rai, Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis,, IET Nanobiotechnology, vol. 11, p.205–211, mar (2017).

DOI: 10.1049/iet-nbt.2016.0003

Google Scholar

[197] H. Umar, D. Kavaz, and N. Rizaner, Biosynthesis of zinc oxide nanoparticles using albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines,, International Journal of Nanomedicine, vol. 14, p.87–100, (2019).

DOI: 10.2147/ijn.s186888

Google Scholar

[198] S. K. Chaudhuri and L. Malodia, Biosynthesis of zinc oxide nanoparticles using leaf extract of calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage,, Applied Nanoscience (Switzerland), vol. 7, p.501–512, nov (2017).

DOI: 10.1007/s13204-017-0586-7

Google Scholar

[199] D. Mahendiran, G. Subash, D. Arumai Selvan, D. Rehana, R. Senthil Kumar, and A. Kalilur Rahiman, Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies,, BioNanoScience, vol. 7, p.530–545, sep (2017).

DOI: 10.1007/s12668-017-0418-y

Google Scholar

[200] N. Supraja, T. N. Prasad, T. G. Krishna, and E. David, Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles,, Applied Nanoscience (Switzerland), vol. 6, p.581–590, apr (2016).

DOI: 10.1007/s13204-015-0472-0

Google Scholar

[201] K. Steffy, G. Shanthi, A. S. Maroky, and S. Selvakumar, Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer,, Journal of Advanced Research, vol. 9, p.69–77, jan (2018).

DOI: 10.1016/j.jare.2017.11.001

Google Scholar

[202] H. Padalia and S. Chanda, Characterization, antifungal and cytotoxic evaluation of green syn-thesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract,, Artificial Cells, Nanomedicine and Biotechnology, vol. 45, p.1751–1761, nov (2017).

DOI: 10.1080/21691401.2017.1282868

Google Scholar

[203] S. Rajeshkumar, S. V. Kumar, A. Ramaiah, H. Agarwal, T. Lakshmi, and S. M. Roopan, Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells,, Enzyme and Microbial Technology, vol. 117, p.91–95, oct (2018).

DOI: 10.1016/j.enzmictec.2018.06.009

Google Scholar

[204] N. Matinise, X. G. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza, ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation,, Applied Sur-face Science, vol. 406, p.339–347, jun (2017).

DOI: 10.1016/j.apsusc.2017.01.219

Google Scholar

[205] F. Buazar, M. Bavi, F. Kroushawi, M. Halvani, A. Khaledi-Nasab, and S. A. Hossieni, Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles,, Journal of Experimental Nanoscience, vol. 11, p.175–184, feb (2016).

DOI: 10.1080/17458080.2015.1039610

Google Scholar

[206] L. F. A. Anand Raj and E. Jayalakshmy, Biosynthesis and characterization of zinc oxide nanoparticles using root extract of Zingiber officinale,, Oriental Journal of Chemistry, vol. 31, p.51–56, mar (2015).

DOI: 10.13005/ojc/310105

Google Scholar

[207] C. Ramamurthy, K. S. Sampath, P. Arunkumar, M. S. Kumar, V. Sujatha, K. Premkumar, and C. Thirunavukkarasu, Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells,, Bioprocess and Biosystems Engineering 2013 36:8, vol. 36, p.1131–1139, feb (2013).

DOI: 10.1007/s00449-012-0867-1

Google Scholar

[208] K. Anu, G. Singaravelu, K. Murugan, and G. Benelli, Green-Synthesis of Selenium Nanoparticles Using Garlic Cloves (Allium sativum): Biophysical Characterization and Cytotoxicity on Vero Cells,, Journal of Cluster Science, vol. 28, p.551–563, dec (2017).

DOI: 10.1007/s10876-016-1123-7

Google Scholar

[209] D. Cui, T. Liang, L. Sun, L. Meng, C. Yang, L. Wang, T. Liang, and Q. Li, Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced hepg2 cells apoptosis,, Pharmaceutical Biology, vol. 56, p.528–534, jan (2018).

DOI: 10.1080/13880209.2018.1510974

Google Scholar

[210] R. Hassanien, A. A. Abed-Elmageed, and D. Z. Husein, Eco-Friendly Approach to Synthesize Selenium Nanoparticles: Photocatalytic Degradation of Sunset Yellow Azo Dye and Anticancer Activity,, ChemistrySelect, vol. 4, p.9018–9026, aug (2019).

DOI: 10.1002/slct.201901267

Google Scholar

[211] B. Fardsadegh and H. Jafarizadeh-Malmiri, Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains,, Green Processing and Synthesis, vol. 8, p.399–407, jan (2019).

DOI: 10.1515/gps-2019-0007

Google Scholar

[212] L. Gunti, R. S. Dass, and N. K. Kalagatur, Phytofabrication of selenium nanoparticles from emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility,, Frontiers in Microbiology, vol. 10, no. APR, (2019).

DOI: 10.3389/fmicb.2019.00931

Google Scholar

[213] C. Mellinas, A. Jiménez, and M. Del Carmen Garrigós, Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using theobroma cacao l. bean shell extract,, Molecules, vol. 24, p.4048, nov (2019).

DOI: 10.3390/molecules24224048

Google Scholar

[214] K. Anu, S. Devanesan, R. Prasanth, M. S. AlSalhi, S. Ajithkumar, and G. Singaravelu, Bio-genesis of selenium nanoparticles and their anti-leukemia activity,, Journal of King Saud University - Science, vol. 32, p.2520–2526, jun (2020).

DOI: 10.1016/j.jksus.2020.04.018

Google Scholar

[215] P. Sowndarya, G. Ramkumar, and M. S. Shivakumar, Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors,, Artificial Cells, Nanomedicine and Biotechnology, vol. 45, p.1490–1495, nov (2017).

DOI: 10.1080/21691401.2016.1252383

Google Scholar

[216] G. Sharma, A. R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J. S. Nam, and S. S. Lee, Biomolecule-mediated synthesis of selenium nanoparticles using dried vitis vinifera (raisin) extract,, Molecules, vol. 19, p.2761–2770, feb (2014).

DOI: 10.3390/molecules19032761

Google Scholar

[217] H. Veisi, N. H. Nasrabadi, and P. Mohammadi, Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions,, Applied Organometallic Chemistry, vol. 30, p.890–896, nov (2016).

DOI: 10.1002/aoc.3517

Google Scholar

[218] E. Turunc, R. Binzet, I. Gumus, G. Binzet, and H. Arslan, Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide,, Materials Chemistry and Physics, vol. 202, p.310–319, dec (2017).

DOI: 10.1016/j.matchemphys.2017.09.032

Google Scholar

[219] N. Edayadulla, N. Basavegowda, and Y. R. Lee, Green synthesis and characterization of palla-dium nanoparticles and their catalytic performance for the efficient synthesis of biologically in-teresting di(indolyl)indolin-2-ones,, Journal of Industrial and Engineering Chemistry, vol. 21, p.1365–1372, jan (2015).

DOI: 10.1016/j.jiec.2014.06.007

Google Scholar

[220] R. Lakshmipathy, B. Palakshi Reddy, N. C. Sarada, K. Chidambaram, and S. Khadeer Pasha, Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application,, Applied Nanoscience (Switzerland), vol. 5, p.223–228, feb (2015).

DOI: 10.1007/s13204-014-0309-2

Google Scholar

[221] P. Dauthal and M. Mukhopadhyay, Biosynthesis of palladium nanoparticles using delonix re-gia leaf extract and its catalytic activity for nitro-aromatics hydrogenation,, Industrial and Engineering Chemistry Research, vol. 52, p.18131–18139, dec (2013).

DOI: 10.1021/ie403410z

Google Scholar

[222] K. Anand, C. Tiloke, A. Phulukdaree, B. Ranjan, A. Chuturgoon, S. Singh, and R. M. Gengan, Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties,, Journal of Photochemistry and Photobiology B: Biology, vol. 165, p.87–95, dec (2016).

DOI: 10.1016/j.jphotobiol.2016.09.039

Google Scholar

[223] M. Rafi Shaik, Z. J. Q. Ali, M. Khan, M. Kuniyil, M. E. Assal, H. Z. Alkhathlan, A. Al-Warthan, M. R. H. Siddiqui, M. Khan, and S. F. Adil, Green synthesis and characterization of palladium nanoparticles using origanum vulgare L. extract and their catalytic activity,, Molecules, vol. 22, p.165, jan (2017).

DOI: 10.3390/molecules22010165

Google Scholar

[224] C. Vijilvani, M. R. Bindhu, F. C. Frincy, M. S. AlSalhi, S. Sabitha, K. Saravanakumar, S. Devanesan, M. Umadevi, M. J. Aljaafreh, and M. Atif, Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves,, Journal of Photochemistry and Photobiology B: Biology, vol. 202, jan (2020).

DOI: 10.1016/j.jphotobiol.2019.111713

Google Scholar

[225] A. Attar and M. Altikatoglu Yapaoz, Biosynthesis of palladium nanoparticles using Diospyros kaki leaf extract and determination of antibacterial efficacy,, Preparative Biochemistry and Biotechnology, vol. 48, p.629–634, aug (2018).

DOI: 10.1080/10826068.2018.1479862

Google Scholar

[226] G. Sharmila, M. Farzana Fathima, S. Haries, S. Geetha, N. Manoj Kumar, and C. Muthukumaran, Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract,, Journal of Molecular Structure, vol. 1138, p.35–40, jun (2017).

DOI: 10.1016/j.molstruc.2017.02.097

Google Scholar

[227] S. Yallappa, J. Manjanna, S. K. Peethambar, A. N. Rajeshwara, and N. D. Satyanarayan, Green Synthesis of Silver Nanoparticles Using Acacia farnesiana (Sweet Acacia) Seed Extract Under Microwave Irradiation and Their Biological Assessment,, Journal of Cluster Science, (2013).

DOI: 10.1007/s10876-013-0599-7

Google Scholar

[228] C. Krishnaraj, P. Muthukumaran, R. Ramachandran, M. D. Balakumaran, and P. T. Kalaichelvan, Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cyto-toxic effects against MDA-MB-231, human breast cancer cells,, Biotechnology Reports, vol. 4, p.42–49, dec (2014).

DOI: 10.1016/j.btre.2014.08.002

Google Scholar

[229] G. Marslin, R. K. Selvakesavan, G. Franklin, B. Sarmento, and A. C. P. Dias, Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera,, International Journal of Nanomedicine, (2015).

DOI: 10.2147/ijn.s81271

Google Scholar

[230] J. Jeyasundari, P. Praba, Y. Jacob, S. Rajendran, and K. Kaleeswari, Green Synthesis and Characterization of Silver Nanoparticles Using Mimusops elengi Flower Extract and Its Synergistic Antimicrobial Potential,, American Chemical Science Journal, (2016).

DOI: 10.9734/acsj/2016/23161

Google Scholar

[231] K. Roy, C. K. Sarkar, and C. K. Ghosh, Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, (2015).

DOI: 10.1016/j.saa.2015.02.058

Google Scholar

[232] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, Synthesis of gold nano-triangles and silver nanoparticles using Aloe vera plant extract,, Biotechnology Progress, (2006).

DOI: 10.1021/bp0501423

Google Scholar

[233] H. Korbekandi, M. R. Chitsazi, G. Asghari, R. B. Najafi, A. Badii, and S. Iravani, Green biosynthesis of silver nanoparticles using Azolla pinnata whole plant hydroalcoholic extract,, Green Processing and Synthesis, vol. 3, no. 5, p.365–373, (2014).

DOI: 10.1515/nano.0015.00010

Google Scholar

[234] K. Sowmiya, J. Thomas Joseph Prakash, and C. J. Thomas Joseph Prakash, Green-synthesis of silver nanoparticles using Abies webbiana LEAVES and evaluation of its antibacterial activity,, ∼ 2033 ∼ Journal of Pharmacognosy and Phytochemistry, vol. 7, no. 5, p.2033–2036, (2018).

Google Scholar

[235] B. Gaddala and S. Nataru, Synthesis, characterization and evaluation of silver nanoparticles through leaves of Abrus precatorius L.: an important medicinal plant,, Applied Nanoscience (Switzerland), (2015).

DOI: 10.1007/s13204-014-0295-4

Google Scholar

[236] C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan, Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens,, Colloids and Surfaces B: Biointerfaces, (2010).

DOI: 10.1016/j.colsurfb.2009.10.008

Google Scholar

[237] T. P. Amaladhas, M. Usha, and S. Naveen, Sunlight induced rapid synthesis and kinetics of silver nanoparticles using leaf extract of Achyranthes aspera L. And their antimicrobial applications,, Advanced Materials Letters, vol. 4, p.779–785, oct (2013).

DOI: 10.5185/amlett.2013.2427

Google Scholar

[238] K. J. Rao and S. Paria, Aegle marmelos leaf extract and plant surfactants mediated green syn-thesis of Au and Ag nanoparticles by optimizing process parameters using taguchi method,, ACS Sustainable Chemistry and Engineering, vol. 3, p.483–491, mar (2015).

DOI: 10.1021/acssuschemeng.5b00022

Google Scholar

[239] V. Vinmathi and S. J. P. Jacob, A green and facile approach for the synthesis of silver nanopar-ticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy,, Bulletin of Materials Science, vol. 38, p.625–628, jun (2015).

DOI: 10.1007/s12034-015-0916-x

Google Scholar

[240] J. R. Nakkala, R. Mata, A. K. Gupta, and S. R. Sadras, Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract,, European Journal of Medicinal Chemistry, vol. 85, p.784–794, oct (2014).

DOI: 10.1016/j.ejmech.2014.08.024

Google Scholar

[241] S. Sulochana, P. Krishnamoorthy, and K. Sivaranjani, Synthesis of Silver Nanoparticles using Leaf Extract of Andrographis paniculata,, Journal of Pharmacology and Toxicology, vol. 7, no. 5, p.251–258, (2012).

DOI: 10.3923/jpt.2012.251.258

Google Scholar

[242] A. Daphedar and T. C. Taranath, Biosynthesis of silver nanoparticles by leaf extract of Albizia saman (Jacq.) Merr. and their cytotoxic effect on mitotic chromosomes of Drimia indica (Roxb.) Jessop,, Environmental Science and Pollution Research, vol. 24, p.25861–25869, nov (2017).

DOI: 10.1007/s11356-017-9899-z

Google Scholar

[243] P. Khandel, S. K. Shahi, D. K. Soni, R. K. Yadaw, and L. Kanwar, Alpinia calcarata: potential source for the fabrication of bioactive silver nanoparticles,, Nano Convergence, vol. 5, dec (2018).

DOI: 10.1186/s40580-018-0167-9

Google Scholar

[244] M. Saha and P. K. Bandyopadhyay, Green Biosynthesis of Silver Nanoparticle Using Garlic, Allium sativum with Reference to Its Antimicrobial Activity Against the Pathogenic Strain of Bacillus sp. and Pseudomonas sp. Infecting Goldfish, Carassius auratus,, Proceedings of the Zoological Society, vol. 72, p.180–186, jun (2019).

DOI: 10.1007/s12595-017-0258-3

Google Scholar

[245] M. J. Firdhouse and P. Lalitha, Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells,, Cancer Nanotechnology, vol. 4, p.137–143, dec (2013).

DOI: 10.1007/s12645-013-0045-4

Google Scholar

[246] S. Chinnappan, S. Kandasamy, S. Arumugam, K. K. Seralathan, S. Thangaswamy, and G. Muthusamy, Biomimetic synthesis of silver nanoparticles using flower extract of Bauhinia purpurea and its antibacterial activity against clinical pathogens,, Environmental Science and Pollution Research, vol. 25, p.963–969, jan (2018).

DOI: 10.1007/s11356-017-0841-1

Google Scholar

[247] D. Bharathi, P. T. Kalaichelvan, V. Atmaram, and S. Anbu, Biogenic synthesis of silver nanoparticles from aqueous flower extract of Bougainvillea spectabilis and their antibacterial activity,, ∼ 248 ∼ Journal of Medicinal Plants Studies, vol. 4, no. 5, p.248–252, (2016).

Google Scholar

[248] P. Balashanmugam, M. D. Balakumaran, R. Murugan, K. Dhanapal, and P. T. Kalaichelvan, Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens,, Microbiological Research, (2016).

DOI: 10.1016/j.micres.2016.06.004

Google Scholar

[249] A. Mahanty, S. Mishra, R. Bosu, U. K. Maurya, S. P. Netam, and B. Sarkar, Phytoextracts-Synthesized Silver Nanoparticles Inhibit Bacterial Fish Pathogen Aeromonas hydrophila,, Indian Journal of Microbiology, vol. 53, p.438–446, dec (2013).

DOI: 10.1007/s12088-013-0409-9

Google Scholar

[250] P. Logeswari, S. Silambarasan, and J. Abraham, Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property,, Journal of Saudi Chemical Society, vol. 19, p.311–317, may (2015).

DOI: 10.1016/j.jscs.2012.04.007

Google Scholar

[251] S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, and K. Srinivasan, Biosynthe-sis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 79, p.594–598, aug (2011).

DOI: 10.1016/j.saa.2011.03.040

Google Scholar

[252] G. Lakshmanan, A. Sathiyaseelan, P. T. Kalaichelvan, and K. Murugesan, Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity,, Karbala International Journal of Modern Science, vol. 4, p.61–68, mar (2018).

DOI: 10.1016/j.kijoms.2017.10.007

Google Scholar

[253] N. Krithiga, A. Rajalakshmi, and A. Jayachitra, Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens,, Journal of Nanoscience, vol. 2015, p.1–8, (2015).

DOI: 10.1155/2015/928204

Google Scholar

[254] M. Gomathi, P. V. Rajkumar, A. Prakasam, and K. Ravichandran, Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity,, Resource-Efficient Technologies, vol. 3, p.280–284, sep (2017).

DOI: 10.1016/j.reffit.2016.12.005

Google Scholar

[255] J. Kesharwani, K. Y. Yoon, J. Hwang, and M. Rai, Phytofabrication of silver nanoparticles by leaf extract of Datura metel: Hypothetical mechanism involved in synthesis,, Journal of Bionanoscience, vol. 3, p.39–44, jun (2009).

DOI: 10.1166/jbns.2009.1008

Google Scholar

[256] V. Soshnikova, Y. J. Kim, P. Singh, Y. Huo, J. Markus, S. Ahn, V. Castro-Aceituno, J. Kang, M. Chokkalingam, R. Mathiyalagan, and D. C. Yang, Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications,, Artificial Cells, Nanomedicine and Biotechnology, (2017).

DOI: 10.1080/21691401.2017.1296849

Google Scholar

[257] M. Dubey, S. Bhadauria, and B. S. Kushwah, Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf,, Dig J Nanomater Biostruct, vol. 4, no. 3, p.537–543, (2009).

Google Scholar

[258] K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A. A. Al-Khedhairy, and J. Musarrat, Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf ex-tract and their antibacterial and antibiofilm activity on clinical isolates,, PLoS ONE, vol. 10, p. e0131178, jul (2015).

DOI: 10.1371/journal.pone.0131178

Google Scholar

[259] G. Rajakumar and A. Abdul Rahuman, Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors,, Acta Tropica, vol. 118, p.196–203, jun (2011).

DOI: 10.1016/j.actatropica.2011.03.003

Google Scholar

[260] S. C.G. Kiruba Daniel, K. Nehru, and M. Sivakumar, Rapid Biosynthesis of Silver Nanoparticles using Eichornia crassipes and its Antibacterial Activity,, Current Nanoscience, vol. 8, p.125–129, feb (2012).

DOI: 10.2174/1573413711208010125

Google Scholar

[261] R. K. Salar, P. Sharma, and N. Kumar, Enhanced antibacterial activity of streptomycin against some human pathogens using green synthesized silver nanoparticles,, Resource-Efficient Tech-nologies, vol. 1, p.106–115, dec (2015).

DOI: 10.1016/j.reffit.2015.11.004

Google Scholar

[262] R. Veerasamy, T. Z. Xin, S. Gunasagaran, T. F. W. Xiang, E. F. C. Yang, N. Jeyakumar, and S. A. Dhanaraj, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities,, Journal of Saudi Chemical Society, vol. 15, p.113–120, apr (2011).

DOI: 10.1016/j.jscs.2010.06.004

Google Scholar

[263] K. Murugan, B. Senthilkumar, D. Senbagam, and S. Al-Sohaibani, Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity,, International Journal of Nanomedicine, vol. 9, no. 1, p.2431–2438, (2014).

DOI: 10.2147/ijn.s61779

Google Scholar

[264] K. D. Arunachalam, S. K. Annamalai, A. M. Arunachalam, and S. Kennedy, Green synthesis of crystalline silver nanoparticles using Indigofera aspalathoides-medicinal plant extract for wound healing applications,, in Asian Journal of Chemistry, vol. 25, (2013).

Google Scholar

[265] S. C. G. C. Daniel, B. N. Banu, M. Harshiny, K. Nehru, P. S. Ganesh, S. Kumaran, and M. Sivakumar, Ipomea carnea-based silver nanoparticle synthesis for antibacterial activity against selected human pathogens,, Journal of Experimental Nanoscience, vol. 9, p.197–209, feb (2014).

DOI: 10.1080/17458080.2011.654274

Google Scholar

[266] V. Kathiravan, S. Ravi, and S. Ashokkumar, Synthesis of silver nanoparticles from Melia du-bia leaf extract and their in vitro anticancer activity,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 130, p.116–121, sep (2014).

DOI: 10.1016/j.saa.2014.03.107

Google Scholar

[267] T. Elavazhagan and K. D. Arunachalam, Memecylon edule leaf extract mediated green synthe-sis of silver and gold nanoparticles.,, International journal of nanomedicine, vol. 6, p.1265–1278, (2011).

DOI: 10.2147/ijn.s18347

Google Scholar

[268] T. N. Prasad and E. K. Elumalai, Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity,, Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 6, p.439–442, (2011).

DOI: 10.1016/s2221-1691(11)60096-8

Google Scholar

[269] K. Vasanth, K. Ilango, R. MohanKumar, A. Agrawal, and G. P. Dubey, Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction,, Colloids and Surfaces B: Biointerfaces, vol. 117, p.354–359, may (2014).

DOI: 10.1016/j.colsurfb.2014.02.052

Google Scholar

[270] P. Anbazhagan, K. Murugan, A. Jaganathan, V. Sujitha, C. M. Samidoss, S. Jayashanthani, P. Amuthavalli, A. Higuchi, S. Kumar, H. Wei, M. Nicoletti, A. Canale, and G. Benelli, Mosquitocidal, Antimalarial and Antidiabetic Potential of Musa paradisiaca-Synthesized Sil-ver Nanoparticles: In Vivo and In Vitro Approaches,, Journal of Cluster Science, vol. 28, p.91–107, jan (2017).

DOI: 10.1007/s10876-016-1047-2

Google Scholar

[271] A. Maji, M. Beg, A. K. Mandal, S. Das, P. K. Jha, A. Kumar, S. Sarwar, M. Hossain, and P. Chakrabarti, Spectroscopic interaction study of human serum albumin and human hemoglobin with Mersilea quadrifolia leaves extract mediated silver nanoparticles having antibacterial and anticancer activity,, Journal of Molecular Structure, vol. 1141, p.584–592, aug (2017).

DOI: 10.1016/j.molstruc.2017.04.005

Google Scholar

[272] G. Sharma, A. R. Sharma, M. Kurian, R. Bhavesh, J. S. Nam, and S. S. Lee, Green synthesis of silver nanoparticle using Myristica fragrans (nutmeg) seed extract and its biological activity,, Digest Journal of Nanomaterials and Biostructures, vol. 9, no. 1, p.325–332, (2014).

Google Scholar

[273] P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, and M. Saravanan, Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates,, Colloids and Surfaces B: Biointerfaces, vol. 108, p.255–259, aug (2013).

DOI: 10.1016/j.colsurfb.2013.03.017

Google Scholar

[274] R. Sukirtha, K. M. Priyanka, J. J. Antony, S. Kamalakkannan, R. Thangam, P. Gunasekaran, M. Krishnan, and S. Achiraman, Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model,, Process Biochemistry, vol. 47, p.273–279, feb (2012).

DOI: 10.1016/j.procbio.2011.11.003

Google Scholar

[275] G. Mahendran and B. D. Ranjitha Kumari, Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham)Mabb. fruit extracts,, Food Science and Human Wellness, vol. 5, p.207–218, dec (2016).

DOI: 10.1016/j.fshw.2016.10.001

Google Scholar

[276] T. Santhoshkumar, A. A. Rahuman, G. Rajakumar, S. Marimuthu, A. Bagavan, C. Jayaseelan, A. A. Zahir, G. Elango, and C. Kamaraj, Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors,, Parasitology Research, vol. 108, p.693–702, mar (2011).

DOI: 10.1007/s00436-010-2115-4

Google Scholar

[277] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity,, Materials Science and Engineering C, vol. 58, p.36–43, (2016).

DOI: 10.1016/j.msec.2015.08.018

Google Scholar

[278] G. Premanand, N. Shanmugam, N. Kannadasan, K. Sathishkumar, and G. Viruthagiri, Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens,, Applied Nanoscience (Switzerland), vol. 6, p.409–415, mar (2016).

DOI: 10.1007/s13204-015-0442-6

Google Scholar

[279] R. Sankar, A. Karthik, A. Prabu, S. Karthik, K. S. Shivashangari, and V. Ravikumar, Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity,, Colloids and Surfaces B: Biointerfaces, vol. 108, p.80–84, (2013).

DOI: 10.1016/j.colsurfb.2013.02.033

Google Scholar

[280] K. Naik and R. Krishnamurthy, Synthesized silver nanoparticles from Pseudarthria viscida exert high anti-microbial activity against pathogenic bacteria,, Krishnamurthy et al. World Journal of Pharmaceutical Research, vol. 7, (2018).

Google Scholar

[281] S. Rajeshkumar, Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram negative pathogens,, Resource-Efficient Technologies, vol. 2, p.30–35, mar (2016).

DOI: 10.1016/j.reffit.2016.06.003

Google Scholar

[282] A. Sudha, J. Jeyakanthan, and P. Srinivasan, Green synthesis of silver nanoparticles using Lip-pia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects,, Resource-Efficient Technologies, vol. 3, p.506–515, dec (2017).

DOI: 10.1016/j.reffit.2017.07.002

Google Scholar

[283] S. Justin Packia Jacob, J. S. Finub, and A. Narayanan, Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line,, Colloids and Surfaces B: Biointerfaces, vol. 91, no. 1, p.212–214, (2012).

DOI: 10.1016/j.colsurfb.2011.11.001

Google Scholar

[284] N. J. Reddy, D. Nagoor Vali, M. Rani, and S. S. Rani, Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit,, Materials Science and Engineering C, vol. 34, no. 1, p.115–122, (2014).

DOI: 10.1016/j.msec.2013.08.039

Google Scholar

[285] K. Anandalakshmi, J. Venugobal, and V. Ramasamy, Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity,, Applied Nanoscience (Switzerland), vol. 6, p.399–408, mar (2016).

DOI: 10.1007/s13204-015-0449-z

Google Scholar

[286] A. Qidwai, R. Kumar, and A. Dikshit, Green synthesis of silver nanoparticles by seed of phoenix sylvestris L. and their role in the management of cosmetics embarrassment,, Green Chemistry Letters and Reviews, vol. 11, p.176–188, apr (2018).

DOI: 10.1080/17518253.2018.1445301

Google Scholar

[287] K. Gopinath, S. Gowri, and A. Arumugam, Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties,, Journal of Nanostructure in Chemistry, vol. 3, no. 1, p.68, (2013).

DOI: 10.1186/2193-8865-3-68

Google Scholar

[288] S. Ojha, A. Sett, and U. Bora, Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study,, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 8, sep (2017).

DOI: 10.1088/2043-6254/aa724b

Google Scholar

[289] B. Venkatesan, V. Subramanian, A. Tumala, and E. Vellaichamy, Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity,, Asian Pacific Journal of Tropical Medicine, vol. 7, pp. S294-S300, sep (2014).

DOI: 10.1016/s1995-7645(14)60249-2

Google Scholar

[290] R. Prasad and V. S. Swamy, Antibacterial Activity of Silver Nanoparticles Synthesized by Bark Extract of Syzygium cumini,, Journal of Nanoparticles, vol. 2013, p.1–6, (2013).

DOI: 10.1155/2013/431218

Google Scholar

[291] V. Ahluwalia, S. Elumalai, V. Kumar, S. Kumar, and R. S. Sangwan, Nano silver particle syn-thesis using Swertia paniculata herbal extract and its antimicrobial activity,, Microbial Patho-genesis, vol. 114, p.402–408, jan (2018).

DOI: 10.1016/j.micpath.2017.11.052

Google Scholar

[292] S. Das, A. Das, A. Maji, M. Beg, A. Singha, and M. Hossain, A compact study on impact of multiplicative Streblus asper inspired biogenic silver nanoparticles as effective photocatalyst, good antibacterial agent and interplay upon interaction with human serum albumin,, Journal of Molecular Liquids, vol. 259, p.18–29, jun (2018).

DOI: 10.1016/j.molliq.2018.02.111

Google Scholar

[293] P. Rajasekharreddy and P. U. Rani, Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells,, Materials Science and Engineering C, vol. 39, p.203–212, jun (2014).

DOI: 10.1016/j.msec.2014.03.003

Google Scholar

[294] K. Govindaraju, S. Tamilselvan, V. Kiruthiga, and G. Singaravelu, Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity,, Journal of Biopesticides, vol. 3, no. 1 SPEC.ISSUE, p.394–399, (2010).

Google Scholar

[295] P. Yugandhar, R. Haribabu, and N. Savithramma, Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp,, 3 Biotech, vol. 5, p.1031–1039, dec (2015).

DOI: 10.1007/s13205-015-0307-4

Google Scholar

[296] S. Pirtarighat, M. Ghannadnia, and S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment,, Journal of Nanostructure in Chemistry, vol. 9, p.1–9, mar (2019).

DOI: 10.1007/s40097-018-0291-4

Google Scholar

[297] B. Venkataram, S. S. Sankar, A. S. Kumar, and B. V. K. Naidu, Synthesis of Silver Nanoparticles Using Setaria italica (Foxtail Millets) Husk and Its Antimicrobial Activity,, Research Journal of Nanoscience and Nanotechnology, (2015).

DOI: 10.3923/rjnn.2015.6.15

Google Scholar

[298] K. Gowri Shankar, N. Pradhan, K. Masilamani, and A. T. Fleming, Silver nanoparticles from Trianthema portulacastrum: Green synthesis, characterization, antibacterial and anticancer properties,, Asian Journal of Pharmaceutical and Clinical Research, vol. 10, p.306–313, mar (2017).

DOI: 10.22159/ajpcr.2017.v10i3.16216

Google Scholar

[299] J. L. López-Miranda, M. Vázquez, N. Fletes, R. Esparza, and G. Rosas, Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity,, Materials Letters, vol. 176, p.285–289, aug (2016).

DOI: 10.1016/j.matlet.2016.04.126

Google Scholar

[300] O. O. Oluwaniyi, H. I. Adegoke, E. T. Adesuji, A. B. Alabi, S. O. Bodede, A. H. Labulo, and C. O. Oseghale, Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities,, Applied Nanoscience (Switzerland), vol. 6, p.903–912, aug (2016).

DOI: 10.1007/s13204-015-0505-8

Google Scholar

[301] G. Gnanajobitha, K. Paulkumar, M. Vanaja, S. Rajeshkumar, C. Malarkodi, G. Annadurai, and C. Kannan, Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy,, Journal of Nanostructure in Chemistry, vol. 3, no. 1, p.67, (2013).

DOI: 10.1186/2193-8865-3-67

Google Scholar

[302] M. Zargar, A. A. Hamid, F. A. Bakar, M. N. Shamsudin, K. Shameli, F. Jahanshiri, and F. Farahani, Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.,, Molecules, vol. 16, p.6667–6676, aug (2011).

DOI: 10.3390/molecules16086667

Google Scholar

[303] R. W. Raut, V. D. Mendhulkar, and S. B. Kashid, Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate,, Journal of Photochemistry and Photobiology B: Biology, vol. 132, p.45–55, (2014).

DOI: 10.1016/j.jphotobiol.2014.02.001

Google Scholar

[304] M. Paul Das, J. Rebecca Livingstone, P. Veluswamy, and J. Das, Exploration of Wedelia chi-nensis leaf-assisted silver nanoparticles for antioxidant, antibacterial and in vitro cytotoxic ap-plications,, Journal of Food and Drug Analysis, vol. 26, p.917–925, apr (2018).

DOI: 10.1016/j.jfda.2017.07.014

Google Scholar

[305] M. Govindarajan, M. Rajeswary, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli, Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors,, Journal of Photo-chemistry and Photobiology B: Biology, vol. 161, p.482–489, aug (2016).

DOI: 10.1016/j.jphotobiol.2016.06.016

Google Scholar

[306] F. A. Khan, M. Zahoor, A. Jalal, and A. U. Rahman, Green Synthesis of Silver Nanoparticles by Using Ziziphus nummularia Leaves Aqueous Extract and Their Biological Activities,, Journal of Nanomaterials, vol. 2016, (2016).

DOI: 10.1155/2016/8026843

Google Scholar

[307] S. Soman and J. G. Ray, Silver nanoparticles synthesized using aqueous leaf extract of Zizi-phus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity,, Journal of Photochemistry and Photobiology B: Biology, vol. 163, p.391–402, (2016).

DOI: 10.1016/j.jphotobiol.2016.08.033

Google Scholar

[308] R. M. Al-Bahrani, S. M. A. Majeed, M. N. Owaid, A. B. Mohammed, and D. A. Rheem, Phyto-fabrication, characteristics and anti-candidal effects of silver nanoparticles from leaves of Ziziphus mauritiana lam,, Acta Pharmaceutica Sciencia, vol. 56, no. 3, p.85–92, (2018).

DOI: 10.23893/1307-2080.aps.05620

Google Scholar

[309] P. Velmurugan, K. Anbalagan, M. Manosathyadevan, K. J. Lee, M. Cho, S. M. Lee, J. H. Park, S. G. Oh, K. S. Bang, and B. T. Oh, Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens,, Bioprocess and Biosystems Engineering, vol. 37, p.1935–1943, sep (2014).

DOI: 10.1007/s00449-014-1169-6

Google Scholar

[310] S. M. Roopan, S. H. S. Kumar, G. Madhumitha, and K. Suthindhiran, Biogenic-Production of SnO2 Nanoparticles and Its Cytotoxic Effect Against Hepatocellular Carcinoma Cell Line (HepG2),, Applied Biochemistry and Biotechnology 2014 175:3, vol. 175, p.1567–1575, nov (2014).

DOI: 10.1007/s12010-014-1381-5

Google Scholar

[311] M. Kumar, A. Mehta, A. Mishra, J. Singh, M. Rawat, and S. Basu, Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight,, Materials Letters, vol. 215, p.121–124, mar (2018).

DOI: 10.1016/j.matlet.2017.12.074

Google Scholar

[312] E. Haritha, S. M. Roopan, G. Madhavi, G. Elango, N. A. Al-Dhabi, and M. V. Arasu, Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies,, Journal of Photochemistry and Photobiology B: Biology, vol. 162, p.441–447, sep (2016).

DOI: 10.1016/j.jphotobiol.2016.07.010

Google Scholar

[313] G.-B. Hong and C.-J. Jiang, Biosynthesis of SnO 2 Nanoparticles Based on Response Surface Methodology and the Study of Their Dye Removal ,, Journal of Nanoscience and Nanotechnology, vol. 18, p.5020–5025, dec (2017).

DOI: 10.1166/jnn.2018.15321

Google Scholar

[314] M. Honarmand, M. Golmohammadi, and A. Naeimi, Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes,, Advanced Pow-der Technology, vol. 30, p.1551–1557, aug (2019).

DOI: 10.1016/j.apt.2019.04.033

Google Scholar

[315] S. Kundu, A. Kumar, S. Sen, and A. Nilabh, Bio-synthesis of SnO2 and comparison its CO sensing performance with conventional processes,, Journal of Alloys and Compounds, vol. 818, p.152841, mar (2020).

DOI: 10.1016/j.jallcom.2019.152841

Google Scholar

[316] G. Chen and Y. Xu, Biosynthesis of cerium oxide nanoparticles and their effect on lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male Sprague Dawley rats,, Materials science & engineering. C, Materials for biological applications, vol. 83, p.148–153, feb (2018).

DOI: 10.1016/j.msec.2017.11.014

Google Scholar

[317] A. Muthuvel, M. Jothibas, V. Mohana, and C. Manoharan, Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity,, Inorganic Chemistry Communications, vol. 119, p.108086, sep (2020).

DOI: 10.1016/j.inoche.2020.108086

Google Scholar

[318] S. K. Kannan and M. Sundrarajan, A green approach for the synthesis of a cerium oxide nanoparticle: Characterization and antibacterial activity,, International Journal of Nanoscience, vol. 13, no. 3, (2014).

DOI: 10.1142/s0219581x14500185

Google Scholar

[319] R. P. Senthilkumar, V. Bhuvaneshwari, V. Malayaman, G. Chitra, R. Ranjithkumar, K. P. B. Dinesh, and B. Chandarshekar, Biogenic method of cerium oxide nanoparticles synthesis using wireweed (Sida acuta Burm.f.) and its antibacterial activity against Escherichia coli,, Materials Research Express, vol. 6, p.105026, aug (2019).

DOI: 10.1088/2053-1591/ab37b9

Google Scholar

[320] D. Dutta, R. Mukherjee, M. Patra, M. Banik, R. Dasgupta, M. Mukherjee, and T. Basu, Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm,, Colloids and Surfaces B: Biointerfaces, vol. 147, p.45–53, nov (2016).

DOI: 10.1016/j.colsurfb.2016.07.045

Google Scholar

[321] S. Balaji, B. K. Mandal, L. V. K. Reddy, and D. Sen, Biogenic Ceria Nanoparticles (CeO2 NPs) for Effective Photocatalytic and Cytotoxic Activity,, Bioengineering 2020, Vol. 7, Page 26, vol. 7, p.26, mar (2020).

DOI: 10.3390/bioengineering7010026

Google Scholar

[322] S. A. Nezhad, A. Es-haghi, and M. H. Tabrizi, Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities,, Applied Organometallic Chemistry, vol. 34, p. e5314, feb (2020).

DOI: 10.1002/aoc.5314

Google Scholar

[323] B. Elahi, M. Mirzaee, M. Darroudi, R. Kazemi Oskuee, K. Sadri, and M. S. Amiri, Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities,, Ceramics International, vol. 45, p.4790–4797, mar (2019).

DOI: 10.1016/j.ceramint.2018.11.173

Google Scholar

[324] G. Sai Priya, A. Kanneganti, K. Anil Kumar, K. Venkateswara Rao, and S. Bykkam, Bio Syn-thesis of Cerium Oxide Nanoparticles using Aloe Barbadensis Miller Gel,, International Journal of Scientific and Research Publications, vol. 4, no. 6, (2014).

Google Scholar

[325] G. Chen and Y. Xu, Biosynthesis of cerium oxide nanoparticles and their effect on lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male Sprague Dawley rats,, Materials Science and Engineering C, vol. 83, p.148–153, feb (2018).

DOI: 10.1016/j.msec.2017.11.014

Google Scholar

[326] Q. Maqbool, Green-synthesised cerium oxide nanostructures (CeO2-NS) show excellent bio-compatibility for phyto-cultures as compared to silver nanostructures (Ag-NS),, RSC Advances, vol. 7, p.56575–56585, dec (2017).

DOI: 10.1039/c7ra12082f

Google Scholar

[327] R. Dobrucka, Synthesis and Structural Characteristic of Platinum Nanoparticles Using Herbal Bidens Tripartitus Extract,, Journal of Inorganic and Organometallic Polymers and Materials, vol. 26, p.219–225, nov (2016).

DOI: 10.1007/s10904-015-0305-3

Google Scholar

[328] A. Thirumurugan, P. Aswitha, C. Kiruthika, S. Nagarajan, and A. N. Christy, Green synthesis of platinum nanoparticles using Azadirachta indica – An eco-friendly approach,, Materials Letters, vol. 170, p.175–178, may (2016).

DOI: 10.1016/j.matlet.2016.02.026

Google Scholar

[329] A. Aygun, F. Gülbagca, L. Y. Ozer, B. Ustaoglu, Y. C. Altunoglu, M. C. Baloglu, M. N. Atalar, M. H. Alma, and F. Sen, Biogenic platinum nanoparticles using black cumin seed and their po-tential usage as antimicrobial and anticancer agent,, Journal of Pharmaceutical and Biomedical Analysis, vol. 179, feb (2020).

DOI: 10.1016/j.jpba.2019.112961

Google Scholar

[330] R. Dobrucka, A. Romaniuk-Drapała, and M. Kaczmarek, Evaluation of biological synthesized platinum nanoparticles using Ononidis radix extract on the cell lung carcinoma A549,, Biomed-ical microdevices, vol. 21, sep (2019).

DOI: 10.1007/s10544-019-0424-7

Google Scholar

[331] B. Şahin, A. Aygün, H. Gündüz, K. Şahin, E. Demir, S. Akocak, and F. Şen, Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line,, Colloids and Surfaces B: Biointerfaces, vol. 163, p.119–124, mar (2018).

DOI: 10.1016/j.colsurfb.2017.12.042

Google Scholar

[332] N. S. Al-Radadi, Green synthesis of platinum nanoparticles using Saudi's Dates extract and their usage on the cancer cell treatment,, Arabian Journal of Chemistry, vol. 12, p.330–349, mar (2019).

DOI: 10.1016/j.arabjc.2018.05.008

Google Scholar

[333] K. Tahir, S. Nazir, A. Ahmad, B. Li, A. U. Khan, Z. U. H. Khan, F. U. Khan, Q. U. Khan, A. Khan, and A. U. Rahman, Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity,, Journal of Photochemistry and Photobiology B: Biology, vol. 166, p.246–251, jan (2017).

DOI: 10.1016/j.jphotobiol.2016.12.016

Google Scholar

[334] D. S. Sheny, D. Philip, and J. Mathew, Synthesis of platinum nanoparticles using dried anacardium occidentale leaf and its catalytic and thermal applications,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 114, p.267–271, (2013).

DOI: 10.1016/j.saa.2013.05.028

Google Scholar

[335] A. A. Olajire, G. O. Adeyeye, and R. A. Yusuf, Alchornea laxiflora Bark Extract Assisted Green Synthesis of Platinum Nanoparticles for Oxidative Desulphurization of Model Oil,, Journal of Cluster Science, vol. 28, p.1565–1578, may (2017).

DOI: 10.1007/s10876-017-1167-3

Google Scholar

[336] S. U. Ganaie, T. Abbasi, and S. A. Abbasi, Biomimetic synthesis of platinum nanoparticles utilizing a terrestrial weed Antigonon leptopus,, Particulate Science and Technology, vol. 36, p.681–688, aug (2018).

DOI: 10.1080/02726351.2017.1292336

Google Scholar

[337] A. John Leo and O. S. Oluwafemi, Plant-mediated synthesis of platinum nanoparticles using water hyacinth as an efficient biomatrix source – An eco-friendly development,, Materials Letters, vol. 196, p.141–144, jun (2017).

DOI: 10.1016/j.matlet.2017.03.047

Google Scholar

[338] A. Bankar, B. Joshi, A. Ravi Kumar, and S. Zinjarde, Banana peel extract mediated synthesis of gold nanoparticles,, Colloids and Surfaces B: Biointerfaces, vol. 80, no. 1, p.45–50, (2010).

DOI: 10.1016/j.colsurfb.2010.05.029

Google Scholar

[339] D. Philip, Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 77, p.807–810, nov (2010).

DOI: 10.1016/j.saa.2010.08.008

Google Scholar

[340] M. M. Rahaman Mollick, B. Bhowmick, D. Mondal, D. Maity, D. Rana, S. K. Dash, S. Chattopadhyay, S. Roy, J. Sarkar, K. Acharya, M. Chakraborty, and D. Chattopadhyay, Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route,, RSC Advances, vol. 4, no. 71, p.37838–37848, (2014).

DOI: 10.1039/c4ra07285e

Google Scholar

[341] A. Kumar, B. Mazinder Boruah, and X. J. Liang, Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS,, (2011).

DOI: 10.1155/2011/202187

Google Scholar

[342] C. Coman, L. F. Leopold, O. D. Ruginǎ, L. Barbu-Tudoran, N. Leopold, M. Tofanǎ, and C. Socaciu, Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate,, Journal of Nanoparticle Research, vol. 16, jan (2014).

DOI: 10.1007/s11051-013-2158-4

Google Scholar

[343] M. V. Sujitha and S. Kannan, Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 102, p.15–23, feb (2013).

DOI: 10.1016/j.saa.2012.09.042

Google Scholar

[344] K. Anand, R. M. Gengan, A. Phulukdaree, and A. Chuturgoon, Agroforestry waste moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity,, Journal of Industrial and Engineering Chemistry, (2015).

DOI: 10.1016/j.jiec.2014.05.021

Google Scholar

[345] S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, N. Gopi, P. Ekambaram, R. Pachaiappan, P. Velusamy, K. Murugan, G. Benelli, R. Suresh Kumar, and M. Suriyanarayanamoorthy, Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549),, Microbial Pathogenesis, vol. 102, p.173–183, jan (2017).

DOI: 10.1016/j.micpath.2016.11.029

Google Scholar

[346] A. Mohammed Fayaz, M. Girilal, R. Venkatesan, and P. T. Kalaichelvan, Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption,, Colloids and Surfaces B: Biointerfaces, vol. 88, no. 1, p.287–291, (2011).

DOI: 10.1016/j.colsurfb.2011.07.003

Google Scholar

[347] D. Philip and C. Unni, Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf,, Physica E: Low-Dimensional Systems and Nanostructures, vol. 43, p.1318–1322, may (2011).

DOI: 10.1016/j.physe.2010.10.006

Google Scholar

[348] S. Priya Velammal, T. A. Devi, and T. P. Amaladhas, Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark,, Journal of Nanostructure in Chemistry, vol. 6, p.247–260, sep (2016).

DOI: 10.1007/s40097-016-0198-x

Google Scholar

[349] M. Keshavamurthy, B. S. Srinath, and V. R. Rai, Phytochemicals-mediated green synthesis of gold nanoparticles using Pterocarpus santalinus L. (Red Sanders) bark extract and their antimicrobial properties,, Particulate Science and Technology, vol. 36, p.785–790, oct (2018).

DOI: 10.1080/02726351.2017.1302533

Google Scholar

[350] R. Sarwar, U. Farooq, M. R. Shah, S. Khan, N. Riaz, S. Naz, A. Ibrar, and A. Khan, Rapid synthesis of gold nanoparticles from Quercus incana and their antimicrobial potential against human pathogens,, Applied Sciences (Switzerland), vol. 7, p.29, jan (2017).

DOI: 10.3390/app7010029

Google Scholar

[351] S. M. Ghoreishi, M. Behpour, and M. Khayatkashani, Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry,, Physica E: Low-Dimensional Systems and Nanostructures, vol. 44, p.97–104, oct (2011).

DOI: 10.1016/j.physe.2011.07.008

Google Scholar

[352] A. Muthuvel, K. Adavallan, K. Balamurugan, and N. Krishnakumar, Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties,, Biomedicine and Preventive Nutrition, vol. 4, no. 2, p.325–332, (2014).

DOI: 10.1016/j.bionut.2014.03.004

Google Scholar

[353] S. Francis, E. P. Koshy, and B. Mathew, Green synthesis of Stereospermum suaveolens capped silver and gold nanoparticles and assessment of their innate antioxidant, antimicrobial and an-tiproliferative activities,, Bioprocess and Biosystems Engineering, vol. 41, p.939–951, jul (2018).

DOI: 10.1007/s00449-018-1925-0

Google Scholar

[354] N. U. Islam, K. Jalil, M. Shahid, A. Rauf, N. Muhammad, A. Khan, M. R. Shah, and M. A. Khan, Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba,, Arabian Journal of Chemistry, vol. 12, p.2914–2925, apr (2019).

DOI: 10.1016/j.arabjc.2015.06.025

Google Scholar

[355] T. S. Dhas, V. G. Kumar, V. Karthick, K. Vasanth, G. Singaravelu, and K. Govindaraju, Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats,, Enzyme and Microbial Technology, vol. 95, p.100–106, (2016).

DOI: 10.1016/j.enzmictec.2016.09.003

Google Scholar

[356] E. H. Ismail, M. M. H. Khalil, F. A. Al Seif, and F. El-Maghdoub, Biosynthesis of gold nanoparticles using extract of grape (Vitis vinifera) leaves and seeds,, in Progress in Nanotech-nology and Nanomaterials, vol. 3, p.1–12, (2014).

Google Scholar

[357] N. Raghuwanshi, P. Kumari, A. K. Srivastava, P. Vashisth, T. C. Yadav, R. Prasad, and V. Pruthi, Synergistic effects of Woodfordia fruticosa gold nanoparticles in preventing microbial adhesion and accelerating wound healing in Wistar albino rats in vivo,, Materials Science and Engineering C, vol. 80, p.252–262, nov (2017).

DOI: 10.1016/j.msec.2017.05.134

Google Scholar

[358] K. P. Kumar, W. Paul, and C. P. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility,, Process Biochemistry, vol. 46, no. 10, p.2007–2013, (2011).

DOI: 10.1016/j.procbio.2011.07.011

Google Scholar

[359] A. A. A. Aljabali, Y. Akkam, M. S. Al Zoubi, K. M. Al-Batayneh, B. Al-Trad, O. A. Alrob, A. M. Alkilany, M. Benamara, and D. J. Evans, Synthesis of gold nanoparticles using leaf extract of ziziphus zizyphus and their antimicrobial activity,, Nanomaterials, vol. 8, mar (2018).

DOI: 10.3390/nano8030174

Google Scholar