[1]
J. Jeevanandam, A. Barhoum, Yen S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J. of Nanotechnol. 9(2018)1050-1074.
DOI: 10.3762/bjnano.9.98
Google Scholar
[2]
A.Taleb, C.Petit, M.P. Pilen, Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization, Hem. Mater.9 (1997)950-959.
DOI: 10.1021/cm960513y
Google Scholar
[3]
B.Krishna, V.Dan, Silver nanoparticles for printable electronics and biological applications, J. Mater. Res.24 (2009)2828-2836.
Google Scholar
[4]
J.Garcia-Barrasa, J.M. Lopez-de-Luzuriaga, M.Monge, Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications, Cent Eur J Chem.9 (2011)7-19.
DOI: 10.2478/s11532-010-0124-x
Google Scholar
[5]
L.Rodriguez-Sanchez, M.C. Blanco, A. Lopez-Quintela, Electrochemical Synthesis of Silver Nanoparticles, J. Phys. Chem. B. 4(2000)9683-9688.
Google Scholar
[6]
N.A. Begum, S. Mondal , S. Basu, R.A. Laskar, D.Mandal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts, Colloids Surf B Biointerfaces. 71(2009)113-118.
DOI: 10.1016/j.colsurfb.2009.01.012
Google Scholar
[7]
S.S. Shankar, A. Rai, A.Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J Colloid Interface Sci.275(2004)496-502.
DOI: 10.1016/j.jcis.2004.03.003
Google Scholar
[8]
F.Thema, E.Manikandan, A.Gurib-Fakim, M. Maaza, Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract, J. Alloys Compd. 655(2016)314-320.
DOI: 10.1016/j.jallcom.2015.09.063
Google Scholar
[9]
A.Deenadayalan,V. Palanichamy, M.R. Selvaraj, Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy127(2014)168-171.
DOI: 10.1016/j.saa.2014.02.058
Google Scholar
[10]
H.Kargarzadeh, M.Mariano, D. Gopakumar, I. Ahmad, S, Thomas, D. Alain, H.Jin, N. Lin, Advances in cellulose nanomaterials, Cellulose25 (2018)2151-2189.
DOI: 10.1007/s10570-018-1723-5
Google Scholar
[11]
K. Kucharska, P. Rybarczyk, I. Holowacz, R. Łukajtis, M. Glinka, M. Kaminski, Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes Molecules 23(2018)1-32.
DOI: 10.3390/molecules23112937
Google Scholar
[12]
M. Szczesna-Antczak, J. Kazimierczak,T. Antczak, Nanotechnology -Methods of Manufacturing Cellulose Nanofibres,Fibers Text East Eur. 20(2012)8-12.
Google Scholar
[13]
N.Thovhogi, A. Diallo, A.Gurib-Fakim, M.Maaza, Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: Main physical properties, J. Alloys Compd. 647(2015)392-396.
DOI: 10.1016/j.jallcom.2015.06.076
Google Scholar
[14]
T.Istirokhatun, N.Rokhati, R.Rachmawaty, M.Meriyani, S.Priyanto, H.Susanto, Cellulose isolation from tropical water Hyacinth for membrane preparation, Procedia Environ Sci.Vol.23(2015)274-281.
DOI: 10.1016/j.proenv.2015.01.041
Google Scholar
[15]
E.Gunasekaran , P.Shankar , K.Mani, John B.Rayappa , Modulation of ZnO film thickness and formation of water-hyacinth nanostructure, European Phys J-Appl Phys. 67(2014)20301.
DOI: 10.1051/epjap/2014140193
Google Scholar
[16]
M.Szymanska-Chargot, M. Chylinska, K.Gadula, A.Koziol, A. Zdunek, Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces, Polymers. 9(2017)495.
DOI: 10.3390/polym9100495
Google Scholar
[17]
A.Lalitha, R.Subbaiya, P. Ponmurugan, Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property, Int J Curr Microbiol App Sci.26(2013)228-235.
Google Scholar
[18]
T.Bhuyan, K.Mishra, M. Khanuja , R.Prasad , A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Mater. Sci. Semicond Process32(2015)55-61.
DOI: 10.1016/j.mssp.2014.12.053
Google Scholar
[19]
S. Gautam, A.Kumar, V. K. Vashistha ,Deepak Kumar Das, Phyto-Assisted Synthesis and Characterization of V2O5 Nanomaterial and their Electrochemical and Antimicrobial Investigations, Nano LIFE 10(2020) 2050003.
DOI: 10.1142/s1793984420500038
Google Scholar
[20]
N. Kulkarni, U. Muddapur, Biosynthesis of metal, nanoparticles: a review. J Nanotechnol. (2014)1–8.
Google Scholar
[21]
C.Rice-evans, N. Miller, P. Bolwell P. Bramley, J. Pridham, The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22(1995), 375–383.
DOI: 10.3109/10715769509145649
Google Scholar
[22]
B. Baruwati, V. Polshettiwar, R.Verma, Microwave-assisted synthesis of nanomaterials in aqueous media. Green Chemistry Series; The Royal Society of Chemistry: Cambridge (2010) 176–216.
DOI: 10.1039/9781849730990-00176
Google Scholar
[23]
A.Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuators B Chem.237 (2016)749–775.
DOI: 10.1016/j.snb.2016.06.114
Google Scholar
[24]
A.Jadhav, P. Khanna, Impact of microwave irradiation on cyclo-octeno-1, 2, 3- selenadiazole: Formation of selenium nanoparticles and their polymorphs, RSC Adv. 5(2015) 44756–44763.
DOI: 10.1039/c5ra05701a
Google Scholar
[25]
M.Schutz, L. Xiao, T. Lehnen, T.Fischer, S. Mathur, Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides, Int. Mater. Rev. 63(2018)341–374.
DOI: 10.1080/09506608.2017.1402158
Google Scholar
[26]
L.Yan Meng, B. Wang, Ming-Guo Ma, Kai-Li Lin, Materials Today Chemistry, The progress of microwave-assisted hydrothermal method in the synthesis of functional, nanomaterials,Mater. Today Chem 1–2(2016)63- 83.
DOI: 10.1016/j.mtchem.2016.11.003
Google Scholar
[27]
B. Lindman, G. Karlstrom, L. Stigsson, On the mechanism of dissolution of cellulose, J Molecular Liquids 156 (2010)76-81.
DOI: 10.1016/j.molliq.2010.04.016
Google Scholar
[28]
D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew. Chemie 44 (2005)3358-3393.
DOI: 10.1002/anie.200460587
Google Scholar
[29]
B. Joseph, V.Sagarika, S.Chinnu, K. Nandakumar, S. Thomas, Cellulose nanocomposites: Fabrication and biomedical applications, J.Biores.Bioprod. 5(2020)231-247.
Google Scholar
[30]
K.Kombaiah, J.Judith, K.John, M. Bououdina, Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties, Ceram Int. 42(2016) 2741-2749.
DOI: 10.1016/j.ceramint.2015.11.003
Google Scholar
[31]
U. Satoshi and C. Rodney, Application of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy, Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission Electron Microscopy to the Characterization of Nanoparticles in the Environment, Environ. Sci. Technol.37 (2003) 786-791.
DOI: 10.1021/es026053t
Google Scholar
[32]
Y.W. Linda, G.H. Tan, X. T. Zeng, T.H.Li, Z. Cheng, Synthesis and Characterization of Transparent Hydrophobic Sol-Gel Hard Coatings, J. Sol Gel Sci. Technol.38(2006)85-89.
DOI: 10.1007/s10971-006-5917-1
Google Scholar
[33]
L.Wu, M.Soutar, X. Zeng, Increasing hydrophobicity of sol–gel hard coatings by chemical and morphological modifications, Surf. Coat. Technol. 198(2005)420-424.
DOI: 10.1016/j.surfcoat.2004.10.050
Google Scholar
[34]
J. Kijlstra, K.Reihs, A. Klamt, Roughness and topology of ultra-hydrophobic surfaces, Colloids Surf. A Physicochem. Eng. Asp. 206(2002)521-529.
DOI: 10.1016/s0927-7757(02)00089-4
Google Scholar
[35]
J.Bico, U.Thiele, D. Quere, Wetting of textured surfaces, Colloids Surf A Physicochem Eng. Asp. 206(2002)41-46.
Google Scholar
[36]
R.Wenzel, Resistance of solid surfaces to wetting by water, Ind Eng Chem. 28(1936)988-994.
DOI: 10.1021/ie50320a024
Google Scholar
[37]
S. Bujok, J. Peter, M. Halecky, P. Ecorchard, A. Machalkova, G. Santos, J. Hodan, E. Pavlova H. Benes , Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles, Polym.Degrad. Stab.,190 (2021)109625.
DOI: 10.1016/j.polymdegradstab.2021.109625
Google Scholar
[38]
V. Paul, Nanotechnology in Medicine: Nanofilm Biomaterials, Yale J. Biol Med.86 (2013)527.
Google Scholar
[39]
A. Azam, S. Ahmed and M. Oves, M. Khan, S. Habib and A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int J. Nanomed.7 (2012) 6003-6009.
DOI: 10.2147/ijn.s35347
Google Scholar
[40]
O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide Int. J. Inorg. Mater.3 (2001)643-646.
Google Scholar
[41]
M. Tsoli, H. Kuhn, W. Brandau, H. Esche, G. Schmid, Cellular Uptake and Toxicity of Au55 Clusters, Small1 (2005)841-844.
DOI: 10.1002/smll.200500104
Google Scholar
[42]
D. Tamire, E. Zereffa, B. Gonfa, Effects of Azadirachta Indica Leaf Extract, Capping Agents, on the Synthesis of Pure And Cu Doped ZnO-Nanoparticles: A Green Approach and Microbial Activity, Open Chem.17 (2019) 246–253.
DOI: 10.1515/chem-2019-0018
Google Scholar
[43]
M. Gupta, R. Tomar, S. Kaushik, R. Mishra, D. Sharma, Effective Antimicrobial Activity of Green ZnO Nano Particles of Catharanthus roseus, Front. Microbiol.9(2018), 1-13.
DOI: 10.3389/fmicb.2018.02030
Google Scholar