Microwave Assisted Synthesis of Antimicrobial Nano-Films from Water Hyacinth (Eichhornia crassipes) and Roselle (Hibiscus sabdariffa) Plant Extract

Article Preview

Abstract:

Cellulose based nanofilms have large applications in biomedical and related fields due to their antimicrobial properties. Their applicability depends upon purity of cellulose, composition, and structural properties of films. The nanofilms of cellulose extracted from Water Hyacinth (Eichhornia crassipes) and Roselle (Hibiscus Sabdariffa) plant possesses excellent properties for biomedical applications due to their biological origin and ZnO or other metal loading properties. Microwave assisted physical separation of cellulose provided excellent films formation properties and ZnO loading compared without any chemical traces. The presence of chemical impurities to affects structural, morphological properties and contact angle. It affects the biomedical applicability of cellulose based films. The microwave-based extraction was further assisted by use of polyethylene glycol with molecular weight 600, which increases the solubility and extractability of cellulose to 90 %. Formed films showed higher contact angle and hydrophobicity. This increased hydrophobicity of cellulosic nanofilms showed enhanced antimicrobial activities towards gram-negative and gram-positive bacteria by water hyacinth nanofilms. Thus, microwave-based synthesis of cellulose nanofilms resulted into enhanced microbial activities.

You might also be interested in these eBooks

Info:

Pages:

37-48

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Jeevanandam, A. Barhoum, Yen S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J. of Nanotechnol. 9(2018)1050-1074.

DOI: 10.3762/bjnano.9.98

Google Scholar

[2] A.Taleb, C.Petit, M.P. Pilen, Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles:  A Way to 2D and 3D Self-Organization, Hem. Mater.9 (1997)950-959.

DOI: 10.1021/cm960513y

Google Scholar

[3] B.Krishna, V.Dan, Silver nanoparticles for printable electronics and biological applications, J. Mater. Res.24 (2009)2828-2836.

Google Scholar

[4] J.Garcia-Barrasa, J.M. Lopez-de-Luzuriaga, M.Monge, Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications, Cent Eur J Chem.9 (2011)7-19.

DOI: 10.2478/s11532-010-0124-x

Google Scholar

[5] L.Rodriguez-Sanchez, M.C. Blanco, A. Lopez-Quintela, Electrochemical Synthesis of Silver Nanoparticles, J. Phys. Chem. B. 4(2000)9683-9688.

Google Scholar

[6] N.A. Begum, S. Mondal , S. Basu, R.A. Laskar, D.Mandal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts, Colloids Surf B Biointerfaces. 71(2009)113-118.

DOI: 10.1016/j.colsurfb.2009.01.012

Google Scholar

[7] S.S. Shankar, A. Rai, A.Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J Colloid Interface Sci.275(2004)496-502.

DOI: 10.1016/j.jcis.2004.03.003

Google Scholar

[8] F.Thema, E.Manikandan, A.Gurib-Fakim, M. Maaza, Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract, J. Alloys Compd. 655(2016)314-320.

DOI: 10.1016/j.jallcom.2015.09.063

Google Scholar

[9] A.Deenadayalan,V. Palanichamy, M.R. Selvaraj, Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy127(2014)168-171.

DOI: 10.1016/j.saa.2014.02.058

Google Scholar

[10] H.Kargarzadeh, M.Mariano, D. Gopakumar, I. Ahmad, S, Thomas, D. Alain, H.Jin, N. Lin, Advances in cellulose nanomaterials, Cellulose25 (2018)2151-2189.

DOI: 10.1007/s10570-018-1723-5

Google Scholar

[11] K. Kucharska, P. Rybarczyk, I. Holowacz, R. Łukajtis, M. Glinka, M. Kaminski, Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes Molecules 23(2018)1-32.

DOI: 10.3390/molecules23112937

Google Scholar

[12] M. Szczesna-Antczak, J. Kazimierczak,T. Antczak, Nanotechnology -Methods of Manufacturing Cellulose Nanofibres,Fibers Text East Eur. 20(2012)8-12.

Google Scholar

[13] N.Thovhogi, A. Diallo, A.Gurib-Fakim, M.Maaza, Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: Main physical properties, J. Alloys Compd. 647(2015)392-396.

DOI: 10.1016/j.jallcom.2015.06.076

Google Scholar

[14] T.Istirokhatun, N.Rokhati, R.Rachmawaty, M.Meriyani, S.Priyanto, H.Susanto, Cellulose isolation from tropical water Hyacinth for membrane preparation, Procedia Environ Sci.Vol.23(2015)274-281.

DOI: 10.1016/j.proenv.2015.01.041

Google Scholar

[15] E.Gunasekaran , P.Shankar , K.Mani, John B.Rayappa , Modulation of ZnO film thickness and formation of water-hyacinth nanostructure, European Phys J-Appl Phys. 67(2014)20301.

DOI: 10.1051/epjap/2014140193

Google Scholar

[16] M.Szymanska-Chargot, M. Chylinska, K.Gadula, A.Koziol, A. Zdunek, Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces, Polymers. 9(2017)495.

DOI: 10.3390/polym9100495

Google Scholar

[17] A.Lalitha, R.Subbaiya, P. Ponmurugan, Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property, Int J Curr Microbiol App Sci.26(2013)228-235.

Google Scholar

[18] T.Bhuyan, K.Mishra, M. Khanuja , R.Prasad , A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Mater. Sci. Semicond Process32(2015)55-61.

DOI: 10.1016/j.mssp.2014.12.053

Google Scholar

[19] S. Gautam, A.Kumar, V. K. Vashistha ,Deepak Kumar Das, Phyto-Assisted Synthesis and Characterization of V2O5 Nanomaterial and their Electrochemical and Antimicrobial Investigations, Nano LIFE 10(2020) 2050003.

DOI: 10.1142/s1793984420500038

Google Scholar

[20] N. Kulkarni, U. Muddapur, Biosynthesis of metal, nanoparticles: a review. J Nanotechnol. (2014)1–8.

Google Scholar

[21] C.Rice-evans, N. Miller, P. Bolwell P. Bramley, J. Pridham, The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22(1995), 375–383.

DOI: 10.3109/10715769509145649

Google Scholar

[22] B. Baruwati, V. Polshettiwar, R.Verma, Microwave-assisted synthesis of nanomaterials in aqueous media. Green Chemistry Series; The Royal Society of Chemistry: Cambridge (2010) 176–216.

DOI: 10.1039/9781849730990-00176

Google Scholar

[23] A.Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuators B Chem.237 (2016)749–775.

DOI: 10.1016/j.snb.2016.06.114

Google Scholar

[24] A.Jadhav, P. Khanna, Impact of microwave irradiation on cyclo-octeno-1, 2, 3- selenadiazole: Formation of selenium nanoparticles and their polymorphs, RSC Adv. 5(2015) 44756–44763.

DOI: 10.1039/c5ra05701a

Google Scholar

[25] M.Schutz, L. Xiao, T. Lehnen, T.Fischer, S. Mathur, Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides, Int. Mater. Rev. 63(2018)341–374.

DOI: 10.1080/09506608.2017.1402158

Google Scholar

[26] L.Yan Meng, B. Wang, Ming-Guo Ma, Kai-Li Lin, Materials Today Chemistry, The progress of microwave-assisted hydrothermal method in the synthesis of functional, nanomaterials,Mater. Today Chem 1–2(2016)63- 83.

DOI: 10.1016/j.mtchem.2016.11.003

Google Scholar

[27] B. Lindman, G. Karlstrom, L. Stigsson, On the mechanism of dissolution of cellulose, J Molecular Liquids 156 (2010)76-81.

DOI: 10.1016/j.molliq.2010.04.016

Google Scholar

[28] D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew. Chemie 44 (2005)3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[29] B. Joseph, V.Sagarika, S.Chinnu, K. Nandakumar, S. Thomas, Cellulose nanocomposites: Fabrication and biomedical applications, J.Biores.Bioprod. 5(2020)231-247.

Google Scholar

[30] K.Kombaiah, J.Judith, K.John, M. Bououdina, Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties, Ceram Int. 42(2016) 2741-2749.

DOI: 10.1016/j.ceramint.2015.11.003

Google Scholar

[31] U. Satoshi and C. Rodney, Application of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy, Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission Electron Microscopy to the Characterization of Nanoparticles in the Environment, Environ. Sci. Technol.37 (2003) 786-791.

DOI: 10.1021/es026053t

Google Scholar

[32] Y.W. Linda, G.H. Tan, X. T. Zeng, T.H.Li, Z. Cheng, Synthesis and Characterization of Transparent Hydrophobic Sol-Gel Hard Coatings, J. Sol Gel Sci. Technol.38(2006)85-89.

DOI: 10.1007/s10971-006-5917-1

Google Scholar

[33] L.Wu, M.Soutar, X. Zeng, Increasing hydrophobicity of sol–gel hard coatings by chemical and morphological modifications, Surf. Coat. Technol. 198(2005)420-424.

DOI: 10.1016/j.surfcoat.2004.10.050

Google Scholar

[34] J. Kijlstra, K.Reihs, A. Klamt, Roughness and topology of ultra-hydrophobic surfaces, Colloids Surf. A Physicochem. Eng. Asp. 206(2002)521-529.

DOI: 10.1016/s0927-7757(02)00089-4

Google Scholar

[35] J.Bico, U.Thiele, D. Quere, Wetting of textured surfaces, Colloids Surf A Physicochem Eng. Asp. 206(2002)41-46.

Google Scholar

[36] R.Wenzel, Resistance of solid surfaces to wetting by water, Ind Eng Chem. 28(1936)988-994.

DOI: 10.1021/ie50320a024

Google Scholar

[37] S. Bujok, J. Peter, M. Halecky, P. Ecorchard, A. Machalkova, G. Santos, J. Hodan, E. Pavlova H. Benes , Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles, Polym.Degrad. Stab.,190 (2021)109625.

DOI: 10.1016/j.polymdegradstab.2021.109625

Google Scholar

[38] V. Paul, Nanotechnology in Medicine: Nanofilm Biomaterials, Yale J. Biol Med.86 (2013)527.

Google Scholar

[39] A. Azam, S. Ahmed and M. Oves, M. Khan, S. Habib and A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int J. Nanomed.7 (2012) 6003-6009.

DOI: 10.2147/ijn.s35347

Google Scholar

[40] O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide Int. J. Inorg. Mater.3 (2001)643-646.

Google Scholar

[41] M. Tsoli, H. Kuhn, W. Brandau, H. Esche, G. Schmid, Cellular Uptake and Toxicity of Au55 Clusters, Small1 (2005)841-844.

DOI: 10.1002/smll.200500104

Google Scholar

[42] D. Tamire, E. Zereffa, B. Gonfa, Effects of Azadirachta Indica Leaf Extract, Capping Agents, on the Synthesis of Pure And Cu Doped ZnO-Nanoparticles: A Green Approach and Microbial Activity, Open Chem.17 (2019) 246–253.

DOI: 10.1515/chem-2019-0018

Google Scholar

[43] M. Gupta, R. Tomar, S. Kaushik, R. Mishra, D. Sharma, Effective Antimicrobial Activity of Green ZnO Nano Particles of Catharanthus roseus, Front. Microbiol.9(2018), 1-13.

DOI: 10.3389/fmicb.2018.02030

Google Scholar