Construction of a Silver Nanoparticle Complex and its Application in Cancer Treatment

Article Preview

Abstract:

Nanomedicine has been used in tumor treatment and research due to its advantages of targeting, controlled release and high absorption rate. Silver nanoparticle (AgNPs), with the advantages of small particle size, and large specific surface area, are of great potential value in suppressing and killing cancer cells. Methods: AgNPs–polyethyleneimine (PEI) –folate (FA) (AgNPs–PF) were synthesised and characterised by several analytical techniques. The ovarian cancer cell line Skov3 was used as the cell model to detect the tumor treatment activity of AgNPs, AgNPs–PF and AgNPs+ AgNPs–PF. Results: Results shown that AgNPs–PF were successfully constructed with uniform particle size of 50–70 nm. AgNPs, AgNPs–PF, AgNPs–PF+ AgNPs all showed a certain ability to inhibit cancer cell proliferation, increase reactive oxygen species and decrease the mitochondrial membrane potential. All AgNPs, AgNPs–PF, AgNPs+ AgNPs–PF promoted DNA damage in Skov3 cells, accompanied by the generation of histone RAD51 and γ-H2AX site, and eventually leading to the apoptosis of Skov3 cells. The combination of AgNPs–PF and AgNPs had a more pronounced effect than either material alone. Conclusion: This study is to report that the combination of AgNPs+ AgNPs–PF can cause stronger cytotoxicity and induce significantly greater cell death compared to AgNPs or AgNPs–PF alone in Skov3 cells. Therefore, the combined application of drugs could be the best way to cancer treatment.

You might also be interested in these eBooks

Info:

Pages:

1-16

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Tomar, N. Kumar, R. Tomar, D. Sood, N. Dhiman, S.K. Dass, S. Prakash, J. Madan, R. Chandra, Biological Evaluation of Noscapine analogues as Potent and Microtubule-Targeted Anticancer Agents. Sci. Rep. 9(2019)19542.

DOI: 10.1038/s41598-019-55839-8

Google Scholar

[2] Y. Wang, H. Huang, Q. Zhang, P. Zhang, Chirality in metai-based anticancer agents. Dalton. Trans. 47(2018) 4017-4026.

DOI: 10.1039/c8dt00089a

Google Scholar

[3] L.A. Ostrovskaya, D.B. Korman, N.V. Bluhterova, M.M. Fomina, V.A. Rikova, A.K. Grehova, K.A. Abzaeva. Polyacrylates of Metals Are a New Class of the Potential Antitumor Drugs. Russ. J. Phys. Chem. B 13 (2019) 956-963.

DOI: 10.1134/s1990793119060277

Google Scholar

[4] L.A. Ostrovskaia, M.G. Voronkov, D.B. Korman, N.V. Bliukhterova, M.M. Fomina, V.A. Rykova, K.A. Abzaeva, L.V. Zhilitskaia.Polyacrylates of noble metals as potential antitumor drugs. Biofizika, 59(2014)785-789.

DOI: 10.1134/s0006350914040216

Google Scholar

[5] X.N. Wu, Q. Li, Y. Feng, Q. Ji. Antitumor Research of the Active Ingredients from Traditional Chinese Medical Plant Polygonum Cuspidatum. Evid-Based Compl Alt, 1(2018)1-10.

DOI: 10.1155/2018/2313021

Google Scholar

[6] Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Two-Dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118(2018) 6409-6455.

DOI: 10.1021/acs.chemrev.7b00727

Google Scholar

[7] S.Q. Wang, L.P. Xu, X.J. Zhang, Ultrasensitive Electrochemical Biosensor Based on Noble Metal Nanomaterials.  Sci. Adv. Mater. 7(2015)2084-2102.

DOI: 10.1166/sam.2015.2260

Google Scholar

[8] D. Dhamecha, S. Jalalpure, K. Jadhav, Doxorubicin functionalized gold nanoparticles: Characterization and activity against human cancer cell lines. Process. Biochemistry. 50(2015) 2298-2306.

DOI: 10.1016/j.procbio.2015.10.007

Google Scholar

[9] P. Mi, Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics.10(2020)4557-4588.

DOI: 10.7150/thno.38069

Google Scholar

[10] N. Gupta, D.B. Rai, A.K. Jangid, D. Pooja, H. Kulhari, Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers, Nanotechnology in Modern. Anim. Biotechnol. (2020) 67-114.

DOI: 10.1007/978-981-13-6004-6_3

Google Scholar

[11] X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 17(2016)1534.

DOI: 10.3390/ijms17091534

Google Scholar

[12] V. Vijayakumar, S.K. Samal, S. Mohanty, S.K. Nayak, Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol. 122(2019)137-148.

DOI: 10.1016/j.ijbiomac.2018.10.120

Google Scholar

[13] S.S.I. Abdalla, H. Katas, F. Azmi, M.F.M. Busra, Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr. Drug. 17(2020)88-100.

DOI: 10.2174/1567201817666191227094334

Google Scholar

[14] Z.A. Ratan, M.F. Haidere, M. Nurunnabi, S.M. Shahriar, A.J.S. Ahammad, Y.Y. Shim, M.J.T. Reaney, J.Y. Cho, Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel). 12(2020)855.

DOI: 10.3390/cancers12040855

Google Scholar

[15] Y. Orooji, S. Mortazavi-Derazkola, S.M. Ghoreishi, M. Amiri, M. Salavati-Niasari, Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 400(2020)123140.

DOI: 10.1016/j.jhazmat.2020.123140

Google Scholar

[16] M.S. Ardestani, A. Bitarafan-Rajabi, P. Mohammadzadeh, S. Mortazavi-Derazkola, O. Sabzevari, A.D. Azar, S. Kazemi, S.R. Hosseini, S.M. Ghoreishi, Synthesis and characterization of novel 99m Tc-DGC nano-complexes for improvement of heart diagnostic. Bioorg. Chem. 96(2020)103572.

DOI: 10.1016/j.bioorg.2020.103572

Google Scholar

[17] S.N. Hosseini, A. Karimian, S.N. Mousavinasab, H. Rahmanpour, M. Yamini, S.H. Zahmatkesh, Xenoderm versus 1% silver sulfadiazine in partial-thickness burns. Asian. J. Surg. 32(2009)234-239.

DOI: 10.1016/s1015-9584(09)60400-0

Google Scholar

[18] C. Malic, C. Verchere, J.S. Arneja, Inpatient silver sulphadiazine versus outpatient nanocrystalline silver models of care for pediatric scald burns: A value analysis. Plast. Surg (Oakv). 22(2014)99-102.

DOI: 10.1177/229255031402200209

Google Scholar

[19] E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia, E.B. Souto, Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials (Basel). 10(2020)292.

DOI: 10.3390/nano10020292

Google Scholar

[20] M.A. Ebrahimzadeh, A. Naghizadeh, O.Amiri, M. Shirzadi-Ahodashti, S. Mortazavi-Derazkola, Green and facile synthesis of Ag nanoparticles using Crataegus pentagyn a fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 94(2020)103425.

DOI: 10.1016/j.bioorg.2019.103425

Google Scholar

[21] M.A. Ebrahimzadeh, A. Naghizadeh, S. Mohammadi-Aghdam, H.Khojasteh, S.M. Ghoreishi, S.Mortazavi-Derazkola, Enhanced catalytic and antibacterial efficiency of biosynthesized Convolvulus fruticosus extract capped gold nanoparticles (CFE@AuNPs). J. Photochem. Photobiol. B. 209(2020)111949.

DOI: 10.1016/j.jphotobiol.2020.111949

Google Scholar

[22] D. Chaudhuri, J.W. Galusha, M.J. Walter, N.J. Borys, M.H. Bartl, J.M. Lupton, Toward Subdiffraction Transmission Microscopy of Diffuse Materials with Silver Nanoparticle White-Light Beacons. Nano. Lett. 9(2009) 952-956.

DOI: 10.1021/nl802819n

Google Scholar

[23] J. Li, D. Zhang, J. Guo, J. Wei, Electrochemical behavior and specific capacitance of polyaniline/silver nanoparticle/multi-walled carbon nanotube composites. Chinese. J. Chem. Phys. 27(2014) 718-724.

DOI: 10.1063/1674-0068/27/06/718-724

Google Scholar

[24] G.S.R. Raju, B. Dariya, S.K. Mungamuri, G. Chalikonda, S.M. Kang, I.N. Khan, P.S. Sushma, G.P. Nagaraju, E. Pavitra, Y.K. Han, Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Semin. Cancer. Biol. 69(2019)178-189.

DOI: 10.1016/j.semcancer.2019.08.013

Google Scholar

[25] J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova, Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug. Deliver. Rev. 65(2013)1866-1879.

DOI: 10.1016/j.addr.2013.09.019

Google Scholar

[26] C. Daglioglu, F.N. Kaci, Cascade therapy with doxorubicin and survivin-targeted tailored nanoparticles: An effective alternative for sensitization of cancer cells to chemotherapy. Int. J. Pharm. 561(2019)74-81.

DOI: 10.1016/j.ijpharm.2019.02.036

Google Scholar

[27] P. Golinska, D. Rathod, M. Wypij, I. Gupta, M. Składanowski, P. Paralikar, H. Dahm, M. Rai, Mycoendophytes as efficient synthesizers of bionanoparticles: nanoantimicrobials, mechanism, and cytotoxicity. Crit. Rev. Biotechnol. 37(2017)765-778.

DOI: 10.1080/07388551.2016.1235011

Google Scholar

[28] T. Shi, X. Sun, Q.Y. He, Cytotoxicity of Silver Nanoparticles Against Bacteria and Tumor Cells. Curr. Protein. Pept. Sci. 9(2018)525-536.

DOI: 10.2174/1389203718666161108092149

Google Scholar

[29] L. Huang, H.Q. Lin, Engineering Sub-Nanometer Channels in Two-Dimensional Materials for Membrane Gas Separation. Membranes (Basel). 8 (2018) 100.

DOI: 10.3390/membranes8040100

Google Scholar

[30] X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS. Nano. 5 (2011) 8739-8749.

DOI: 10.1021/nn202710s

Google Scholar

[31] Z. Li, X. Liu, X. Chen, M. X. Chua, Y.L. Wu, Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer. Ma. Sci. Eng. C. 76(2017)66-72.

DOI: 10.1016/j.msec.2017.02.163

Google Scholar

[32] X.F. Zhang, J.H. Park, Y.J. Choi, M.H. Kang, S. Gurunathan, J.H. Kim, Silver nanoparticles cause complications in pregnant mice. Int. J. Nanomed. 10(2015) 7057-7071.

DOI: 10.2147/ijn.s95694

Google Scholar

[33] K. Jadhav, S.L. Deore, D. Dhamecha, R. Hr, S. Jagwani, S.S. Jalalpure, R. Bohara, Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS. Biomater. Sci. Eng. 4(2018) 892–899.

DOI: 10.1021/acsbiomaterials.7b00707

Google Scholar

[34] K. Jadhav, D. Dhamecha, B.Dalvi, M. Patil, Green Synthesis of Silver Nanoparticles Using Salacia chinensis: Characterization and its Antibacterial Activity. J. Particul. Sci. Technol. 33(2015)445-455.

DOI: 10.1080/02726351.2014.1003628

Google Scholar

[35] H.R. Rajeshwari, D. Dhamecha, S. Jagwani, D. Patil, S. Hegde, R. Potdar, R. Metgud, S. Jalalpure, S. Roy, K. Jadhav, N.K. Tiwari, S. Koduru, S. Hugar, S. Hugar, S. Dodamani, Formulation of thermoreversible gel of cranberry juice concentrate: Evaluation, biocompatibility studies and its antimicrobial activity against periodontal pathogens. Mat. Sci. Eng. C. 75(2017)1506-1514.

DOI: 10.1016/j.msec.2017.03.054

Google Scholar

[36] Y.L. Yao, C. Shu, G. Feng, Q. Wang, Y.Y Yan, Y. Yi, H.X. Wang, X.F. Zhang, L.M. Wang, Polysaccharides from Pyracantha fortuneana and its biological activity. Int. J. Biol. Macromol. 150 (2020) 1162-1174.

DOI: 10.1016/j.ijbiomac.2019.10.125

Google Scholar

[37] C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochem. Acta. A. Mol. Biomol. Spectrosc. 90(2012)78-84.

DOI: 10.1016/j.saa.2012.01.006

Google Scholar

[38] H. Zhu, M. Du, M. Zhang, P. Wang, S. Bao, L. Wang, Y. Fu, J. Yao, Facile fabrication of AgNPs/(PVA/PEI) nanofibers: high electrochemical efficiency and durability for biosensors. Biosens. Bioelectron. 49(2013)210-215.

DOI: 10.1016/j.bios.2013.04.016

Google Scholar

[39] W. Hu, X. Yu, Q. Hu, J. Kong, L. Li, X. Zhang, Methyl Orange removal by a novel PEI-AuNPs-hemin nanocomposite. J. Environ. Sci (China). 53(2017)278-283.

DOI: 10.1016/j.jes.2016.01.016

Google Scholar

[40] L. Braydich-Stolle, S. Hussain, J.J. Schlager, M.C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88(2005) 412-419.

DOI: 10.1093/toxsci/kfi256

Google Scholar

[41] M.J.D. Clift, S. Bhattacharjee, D.M. Brown, V. Stone, The effects of serum on the toxicity of manufactured nanoparticles. Toxicol. Lett. 198(2010)358-365.

DOI: 10.1016/j.toxlet.2010.08.002

Google Scholar

[42] P.V. Asharani, M.P. Hande, Anti-proliferative activity of silver nanoparticles. BMC. Cell. Biol. 10(2009) 65.

DOI: 10.1186/1471-2121-10-65

Google Scholar

[43] N. Barabutis, A.V. Schally, Antioxidant activity of growth hormone-releasing hormone antagonists in LNCaP human prostate cancer line. Proc. Nat. Acad. Sci. USA. 105 (2008) 20470-20475.

DOI: 10.1073/pnas.0811209106

Google Scholar

[44] M. Dewaele, H. Maes, P. Agostinis, ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy. 6(2010)838-854.

DOI: 10.4161/auto.6.7.12113

Google Scholar

[45] L.A. Dainty, J.I. Risinger, C. Morrison, G.V.R. Chandramouli, M.A. Bidus, C. Zahn, G.S. Rose, J. Fowler, A. Berchuck, G.L. Maxwell, Overexpression of folate binding protein and mesothelin are associated with uterine serous carcinoma. Gynecol Oncol. 105(2007)563-570.

DOI: 10.1016/j.ygyno.2006.10.063

Google Scholar

[46] Y. Yuan, D.A. Nymoen, H.P. Dong, O. Bjorang, M. Shih, P.S. Le, C.G. Low, C.G. Trop, B. Davidson, Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma inserous effusions. Hum. Pathol. 40(2009)1453-1460.

DOI: 10.1016/j.humpath.2009.02.013

Google Scholar

[47] G. Hong, R. Yuan, B. Liang, J. Shen, X. Yang, X. Shuai, Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed. Microdevices. 10(2008)693-700.

DOI: 10.1007/s10544-008-9180-9

Google Scholar

[48] D. Su, X. Yang, Q. Xia, Q. Zhang, F. Chai, C. Wang, F. Qu, Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis. Nanotechnology. 25(2014)355702.

DOI: 10.1088/0957-4484/25/35/355702

Google Scholar

[49] Y. Wang, B.B. Newell, Irudayaraj, J. Folic acid protected silver nanocarriers for targeted drug delivery. J. Biomed. Nanotechnol. 8(2012)751-759.

DOI: 10.1166/jbn.2012.1437

Google Scholar

[50] M.L. Circu, T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free. Radical. Bio. Med. 48(2010)749-762.

DOI: 10.1016/j.freeradbiomed.2009.12.022

Google Scholar

[51] H.U. Simon, A. Haj-Yehia, F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 5 (2000) 415-418.

DOI: 10.1023/a:1009616228304

Google Scholar

[52] K.C. Nguyen, W.G. Willmore, A.F. Tayabali, Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology. 306 (2013) 114-123.

DOI: 10.1016/j.tox.2013.02.010

Google Scholar

[53] C. Carlson, S.M. Hussain, A.M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, J. J. Schlager, Unique cellular interac-tion of silver nanoparticles: size dependent generation of reactive ox-ygen species. J. Phys. Chem. B. 112 (2008) 13608-13619.

DOI: 10.1021/jp712087m

Google Scholar

[54] A. Shvedova, V. Castranova, E. Kisin, D. Diane Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, P. Baron, Exposure to carbon nanotube material: assessment of nanotubecytotoxicity using human keratinocyte cells. Toxicol. Environ. Health. A. 66 (2003) 1909-1926.

DOI: 10.1080/713853956

Google Scholar

[55] H.Y. Lee, H.K. Park, Y.M. Lee, K. Kim, S.B. Park, A practical procedure forproducing silver nanocoated fabric and its an tibacterial evaluation for biomedical applications. Chem. Commun. 28 (2007) 2959-2961.

DOI: 10.1039/b703034g

Google Scholar

[56] B.D. Chithrani, A.A. Ghazani, W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano. Lett. 6 (2006) 662-668.

DOI: 10.1021/nl052396o

Google Scholar

[57] L. Sun, Y. Li, X. Liu, M. Jin, Z. Long, Z. Du, Guo, C.; Huang, P.; Sun, Z. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol. In. Vitro. 25 (2011) 1619-1629.

DOI: 10.1016/j.tiv.2011.06.012

Google Scholar

[58] R. Foldbjerg, D.A. Dang, H. Autrup, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85 (2011) 743-750.

DOI: 10.1007/s00204-010-0545-5

Google Scholar

[59] R. Kapoor, P. Kakkar, Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes. PLoS. One. 7 (2012) e41663.

DOI: 10.1371/journal.pone.0041663

Google Scholar

[60] M.S. Ahamad, S. Siddiqui, A. Jafri, Inductiong of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS genetration cell cycle arrest. PLoS. One. 9 (2014) e110003.

DOI: 10.1371/journal.pone.0110003

Google Scholar

[61] M. Zhao, W.K. Mydlarz, S. Zhou, J. Califano, Head and neck cancer cell lines are resistant to mitochondrial-depolarization-induced apoptosis. ORL. J. Otorhinolaryngol. Relat. 70 (2008) 257-263.

DOI: 10.1159/000133280

Google Scholar

[62] M.B. Vallerga, S.F. Mansilla, M.B. Federico, A.P. Bertolin, V. Gottifredi, Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation. Proc. Nat. Acad. Sci. USA. 112 (2015) 6624-6633.

DOI: 10.1073/pnas.1508543112

Google Scholar

[63] R.A. Baldock, M. Day, O.J. Wilkinson, R. Cloney, P. Jeggo, A. Oliver, F. Watts, L. Pearl, ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX. Cell. Rep. 13 (2015) 2081-2089.

DOI: 10.1016/j.celrep.2015.10.074

Google Scholar

[64] C.F. Lu, X.Y. Yuan, L.Z. Li, W. Zhou, J. Zhao, L.M. Wang, S.Q. Peng, Combined exposure to nano-silica and lead induced potentiation of oxidative stress and DNA damage in human lung epithelial cells. Ecotoxicol. Environ. Saf. 122 (2015) 537-544.

DOI: 10.1016/j.ecoenv.2015.09.030

Google Scholar

[65] B. Sambandam, T. Devasena, V.I. Islam, B.M. Prakhya, Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines. Indian. J. Exp. Biol. 53 (2015) 585-593.

Google Scholar

[66] X. Yao, C. Huang, X. Chen, Z. Yi, L. Sanche, Chemical Radiosensitivity of DNA Induced by Gold Nanoparticles. J. Biomed. Nanotechnol. 11 (2015) 478-485.

DOI: 10.1166/jbn.2015.1922

Google Scholar

[67] B. Levine, Cell biology: Autophagy and cancer. Nature. 446 (2007) 745-747.

Google Scholar

[68] C.M. Walsh, A.L. Edinger, The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 236 (2010) 95-109.

DOI: 10.1111/j.1600-065x.2010.00919.x

Google Scholar

[69] W. Liao, Z. Yu, Z. Lin, Z. Lei, Z. Ning, J.M. Regenstein, J. Yang, J. Ren, Biofunctionalization of selenium nanoparticle with dictyophora indusiata polysaccharide and its antiproliferative activity through death-receptor and mitochondria-mediated apoptotic pathways. Sci. Rep. 5 (2015) 18629.

DOI: 10.1038/srep18629

Google Scholar

[70] D.B. Zorov, C.R. Filburn, L.O. Klotz , J.L. Zweier , S.J. Sollott , Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192 (2000) 1001-1014.

DOI: 10.1084/jem.192.7.1001

Google Scholar

[71] A. Fico, G. Manganelli , L. Cigliano, P. Bergamo, P. Abrescia, C. Franceschi, G. Martini, S. Filosa, 2-deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathione. Free. Radic. Biol. Med. 45 (2008) 211-217.

DOI: 10.1016/j.freeradbiomed.2008.04.017

Google Scholar

[72] B. Liu, Y. Chen, D.K. St Clair. ROS and p.53: a versatile partnership. Free. Radic. Biol. Med. 44 (2008) 1529-1535.

Google Scholar

[73] V. Sharma, D. Anderson, A. Dhawan, Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 17 (2012) 852-870.

DOI: 10.1007/s10495-012-0705-6

Google Scholar