[1]
V. Tomar, N. Kumar, R. Tomar, D. Sood, N. Dhiman, S.K. Dass, S. Prakash, J. Madan, R. Chandra, Biological Evaluation of Noscapine analogues as Potent and Microtubule-Targeted Anticancer Agents. Sci. Rep. 9(2019)19542.
DOI: 10.1038/s41598-019-55839-8
Google Scholar
[2]
Y. Wang, H. Huang, Q. Zhang, P. Zhang, Chirality in metai-based anticancer agents. Dalton. Trans. 47(2018) 4017-4026.
DOI: 10.1039/c8dt00089a
Google Scholar
[3]
L.A. Ostrovskaya, D.B. Korman, N.V. Bluhterova, M.M. Fomina, V.A. Rikova, A.K. Grehova, K.A. Abzaeva. Polyacrylates of Metals Are a New Class of the Potential Antitumor Drugs. Russ. J. Phys. Chem. B 13 (2019) 956-963.
DOI: 10.1134/s1990793119060277
Google Scholar
[4]
L.A. Ostrovskaia, M.G. Voronkov, D.B. Korman, N.V. Bliukhterova, M.M. Fomina, V.A. Rykova, K.A. Abzaeva, L.V. Zhilitskaia.Polyacrylates of noble metals as potential antitumor drugs. Biofizika, 59(2014)785-789.
DOI: 10.1134/s0006350914040216
Google Scholar
[5]
X.N. Wu, Q. Li, Y. Feng, Q. Ji. Antitumor Research of the Active Ingredients from Traditional Chinese Medical Plant Polygonum Cuspidatum. Evid-Based Compl Alt, 1(2018)1-10.
DOI: 10.1155/2018/2313021
Google Scholar
[6]
Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Two-Dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118(2018) 6409-6455.
DOI: 10.1021/acs.chemrev.7b00727
Google Scholar
[7]
S.Q. Wang, L.P. Xu, X.J. Zhang, Ultrasensitive Electrochemical Biosensor Based on Noble Metal Nanomaterials. Sci. Adv. Mater. 7(2015)2084-2102.
DOI: 10.1166/sam.2015.2260
Google Scholar
[8]
D. Dhamecha, S. Jalalpure, K. Jadhav, Doxorubicin functionalized gold nanoparticles: Characterization and activity against human cancer cell lines. Process. Biochemistry. 50(2015) 2298-2306.
DOI: 10.1016/j.procbio.2015.10.007
Google Scholar
[9]
P. Mi, Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics.10(2020)4557-4588.
DOI: 10.7150/thno.38069
Google Scholar
[10]
N. Gupta, D.B. Rai, A.K. Jangid, D. Pooja, H. Kulhari, Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers, Nanotechnology in Modern. Anim. Biotechnol. (2020) 67-114.
DOI: 10.1007/978-981-13-6004-6_3
Google Scholar
[11]
X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 17(2016)1534.
DOI: 10.3390/ijms17091534
Google Scholar
[12]
V. Vijayakumar, S.K. Samal, S. Mohanty, S.K. Nayak, Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol. 122(2019)137-148.
DOI: 10.1016/j.ijbiomac.2018.10.120
Google Scholar
[13]
S.S.I. Abdalla, H. Katas, F. Azmi, M.F.M. Busra, Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr. Drug. 17(2020)88-100.
DOI: 10.2174/1567201817666191227094334
Google Scholar
[14]
Z.A. Ratan, M.F. Haidere, M. Nurunnabi, S.M. Shahriar, A.J.S. Ahammad, Y.Y. Shim, M.J.T. Reaney, J.Y. Cho, Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel). 12(2020)855.
DOI: 10.3390/cancers12040855
Google Scholar
[15]
Y. Orooji, S. Mortazavi-Derazkola, S.M. Ghoreishi, M. Amiri, M. Salavati-Niasari, Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 400(2020)123140.
DOI: 10.1016/j.jhazmat.2020.123140
Google Scholar
[16]
M.S. Ardestani, A. Bitarafan-Rajabi, P. Mohammadzadeh, S. Mortazavi-Derazkola, O. Sabzevari, A.D. Azar, S. Kazemi, S.R. Hosseini, S.M. Ghoreishi, Synthesis and characterization of novel 99m Tc-DGC nano-complexes for improvement of heart diagnostic. Bioorg. Chem. 96(2020)103572.
DOI: 10.1016/j.bioorg.2020.103572
Google Scholar
[17]
S.N. Hosseini, A. Karimian, S.N. Mousavinasab, H. Rahmanpour, M. Yamini, S.H. Zahmatkesh, Xenoderm versus 1% silver sulfadiazine in partial-thickness burns. Asian. J. Surg. 32(2009)234-239.
DOI: 10.1016/s1015-9584(09)60400-0
Google Scholar
[18]
C. Malic, C. Verchere, J.S. Arneja, Inpatient silver sulphadiazine versus outpatient nanocrystalline silver models of care for pediatric scald burns: A value analysis. Plast. Surg (Oakv). 22(2014)99-102.
DOI: 10.1177/229255031402200209
Google Scholar
[19]
E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia, E.B. Souto, Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials (Basel). 10(2020)292.
DOI: 10.3390/nano10020292
Google Scholar
[20]
M.A. Ebrahimzadeh, A. Naghizadeh, O.Amiri, M. Shirzadi-Ahodashti, S. Mortazavi-Derazkola, Green and facile synthesis of Ag nanoparticles using Crataegus pentagyn a fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 94(2020)103425.
DOI: 10.1016/j.bioorg.2019.103425
Google Scholar
[21]
M.A. Ebrahimzadeh, A. Naghizadeh, S. Mohammadi-Aghdam, H.Khojasteh, S.M. Ghoreishi, S.Mortazavi-Derazkola, Enhanced catalytic and antibacterial efficiency of biosynthesized Convolvulus fruticosus extract capped gold nanoparticles (CFE@AuNPs). J. Photochem. Photobiol. B. 209(2020)111949.
DOI: 10.1016/j.jphotobiol.2020.111949
Google Scholar
[22]
D. Chaudhuri, J.W. Galusha, M.J. Walter, N.J. Borys, M.H. Bartl, J.M. Lupton, Toward Subdiffraction Transmission Microscopy of Diffuse Materials with Silver Nanoparticle White-Light Beacons. Nano. Lett. 9(2009) 952-956.
DOI: 10.1021/nl802819n
Google Scholar
[23]
J. Li, D. Zhang, J. Guo, J. Wei, Electrochemical behavior and specific capacitance of polyaniline/silver nanoparticle/multi-walled carbon nanotube composites. Chinese. J. Chem. Phys. 27(2014) 718-724.
DOI: 10.1063/1674-0068/27/06/718-724
Google Scholar
[24]
G.S.R. Raju, B. Dariya, S.K. Mungamuri, G. Chalikonda, S.M. Kang, I.N. Khan, P.S. Sushma, G.P. Nagaraju, E. Pavitra, Y.K. Han, Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Semin. Cancer. Biol. 69(2019)178-189.
DOI: 10.1016/j.semcancer.2019.08.013
Google Scholar
[25]
J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova, Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug. Deliver. Rev. 65(2013)1866-1879.
DOI: 10.1016/j.addr.2013.09.019
Google Scholar
[26]
C. Daglioglu, F.N. Kaci, Cascade therapy with doxorubicin and survivin-targeted tailored nanoparticles: An effective alternative for sensitization of cancer cells to chemotherapy. Int. J. Pharm. 561(2019)74-81.
DOI: 10.1016/j.ijpharm.2019.02.036
Google Scholar
[27]
P. Golinska, D. Rathod, M. Wypij, I. Gupta, M. Składanowski, P. Paralikar, H. Dahm, M. Rai, Mycoendophytes as efficient synthesizers of bionanoparticles: nanoantimicrobials, mechanism, and cytotoxicity. Crit. Rev. Biotechnol. 37(2017)765-778.
DOI: 10.1080/07388551.2016.1235011
Google Scholar
[28]
T. Shi, X. Sun, Q.Y. He, Cytotoxicity of Silver Nanoparticles Against Bacteria and Tumor Cells. Curr. Protein. Pept. Sci. 9(2018)525-536.
DOI: 10.2174/1389203718666161108092149
Google Scholar
[29]
L. Huang, H.Q. Lin, Engineering Sub-Nanometer Channels in Two-Dimensional Materials for Membrane Gas Separation. Membranes (Basel). 8 (2018) 100.
DOI: 10.3390/membranes8040100
Google Scholar
[30]
X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS. Nano. 5 (2011) 8739-8749.
DOI: 10.1021/nn202710s
Google Scholar
[31]
Z. Li, X. Liu, X. Chen, M. X. Chua, Y.L. Wu, Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer. Ma. Sci. Eng. C. 76(2017)66-72.
DOI: 10.1016/j.msec.2017.02.163
Google Scholar
[32]
X.F. Zhang, J.H. Park, Y.J. Choi, M.H. Kang, S. Gurunathan, J.H. Kim, Silver nanoparticles cause complications in pregnant mice. Int. J. Nanomed. 10(2015) 7057-7071.
DOI: 10.2147/ijn.s95694
Google Scholar
[33]
K. Jadhav, S.L. Deore, D. Dhamecha, R. Hr, S. Jagwani, S.S. Jalalpure, R. Bohara, Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS. Biomater. Sci. Eng. 4(2018) 892–899.
DOI: 10.1021/acsbiomaterials.7b00707
Google Scholar
[34]
K. Jadhav, D. Dhamecha, B.Dalvi, M. Patil, Green Synthesis of Silver Nanoparticles Using Salacia chinensis: Characterization and its Antibacterial Activity. J. Particul. Sci. Technol. 33(2015)445-455.
DOI: 10.1080/02726351.2014.1003628
Google Scholar
[35]
H.R. Rajeshwari, D. Dhamecha, S. Jagwani, D. Patil, S. Hegde, R. Potdar, R. Metgud, S. Jalalpure, S. Roy, K. Jadhav, N.K. Tiwari, S. Koduru, S. Hugar, S. Hugar, S. Dodamani, Formulation of thermoreversible gel of cranberry juice concentrate: Evaluation, biocompatibility studies and its antimicrobial activity against periodontal pathogens. Mat. Sci. Eng. C. 75(2017)1506-1514.
DOI: 10.1016/j.msec.2017.03.054
Google Scholar
[36]
Y.L. Yao, C. Shu, G. Feng, Q. Wang, Y.Y Yan, Y. Yi, H.X. Wang, X.F. Zhang, L.M. Wang, Polysaccharides from Pyracantha fortuneana and its biological activity. Int. J. Biol. Macromol. 150 (2020) 1162-1174.
DOI: 10.1016/j.ijbiomac.2019.10.125
Google Scholar
[37]
C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochem. Acta. A. Mol. Biomol. Spectrosc. 90(2012)78-84.
DOI: 10.1016/j.saa.2012.01.006
Google Scholar
[38]
H. Zhu, M. Du, M. Zhang, P. Wang, S. Bao, L. Wang, Y. Fu, J. Yao, Facile fabrication of AgNPs/(PVA/PEI) nanofibers: high electrochemical efficiency and durability for biosensors. Biosens. Bioelectron. 49(2013)210-215.
DOI: 10.1016/j.bios.2013.04.016
Google Scholar
[39]
W. Hu, X. Yu, Q. Hu, J. Kong, L. Li, X. Zhang, Methyl Orange removal by a novel PEI-AuNPs-hemin nanocomposite. J. Environ. Sci (China). 53(2017)278-283.
DOI: 10.1016/j.jes.2016.01.016
Google Scholar
[40]
L. Braydich-Stolle, S. Hussain, J.J. Schlager, M.C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88(2005) 412-419.
DOI: 10.1093/toxsci/kfi256
Google Scholar
[41]
M.J.D. Clift, S. Bhattacharjee, D.M. Brown, V. Stone, The effects of serum on the toxicity of manufactured nanoparticles. Toxicol. Lett. 198(2010)358-365.
DOI: 10.1016/j.toxlet.2010.08.002
Google Scholar
[42]
P.V. Asharani, M.P. Hande, Anti-proliferative activity of silver nanoparticles. BMC. Cell. Biol. 10(2009) 65.
DOI: 10.1186/1471-2121-10-65
Google Scholar
[43]
N. Barabutis, A.V. Schally, Antioxidant activity of growth hormone-releasing hormone antagonists in LNCaP human prostate cancer line. Proc. Nat. Acad. Sci. USA. 105 (2008) 20470-20475.
DOI: 10.1073/pnas.0811209106
Google Scholar
[44]
M. Dewaele, H. Maes, P. Agostinis, ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy. 6(2010)838-854.
DOI: 10.4161/auto.6.7.12113
Google Scholar
[45]
L.A. Dainty, J.I. Risinger, C. Morrison, G.V.R. Chandramouli, M.A. Bidus, C. Zahn, G.S. Rose, J. Fowler, A. Berchuck, G.L. Maxwell, Overexpression of folate binding protein and mesothelin are associated with uterine serous carcinoma. Gynecol Oncol. 105(2007)563-570.
DOI: 10.1016/j.ygyno.2006.10.063
Google Scholar
[46]
Y. Yuan, D.A. Nymoen, H.P. Dong, O. Bjorang, M. Shih, P.S. Le, C.G. Low, C.G. Trop, B. Davidson, Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma inserous effusions. Hum. Pathol. 40(2009)1453-1460.
DOI: 10.1016/j.humpath.2009.02.013
Google Scholar
[47]
G. Hong, R. Yuan, B. Liang, J. Shen, X. Yang, X. Shuai, Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed. Microdevices. 10(2008)693-700.
DOI: 10.1007/s10544-008-9180-9
Google Scholar
[48]
D. Su, X. Yang, Q. Xia, Q. Zhang, F. Chai, C. Wang, F. Qu, Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis. Nanotechnology. 25(2014)355702.
DOI: 10.1088/0957-4484/25/35/355702
Google Scholar
[49]
Y. Wang, B.B. Newell, Irudayaraj, J. Folic acid protected silver nanocarriers for targeted drug delivery. J. Biomed. Nanotechnol. 8(2012)751-759.
DOI: 10.1166/jbn.2012.1437
Google Scholar
[50]
M.L. Circu, T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free. Radical. Bio. Med. 48(2010)749-762.
DOI: 10.1016/j.freeradbiomed.2009.12.022
Google Scholar
[51]
H.U. Simon, A. Haj-Yehia, F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 5 (2000) 415-418.
DOI: 10.1023/a:1009616228304
Google Scholar
[52]
K.C. Nguyen, W.G. Willmore, A.F. Tayabali, Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology. 306 (2013) 114-123.
DOI: 10.1016/j.tox.2013.02.010
Google Scholar
[53]
C. Carlson, S.M. Hussain, A.M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, J. J. Schlager, Unique cellular interac-tion of silver nanoparticles: size dependent generation of reactive ox-ygen species. J. Phys. Chem. B. 112 (2008) 13608-13619.
DOI: 10.1021/jp712087m
Google Scholar
[54]
A. Shvedova, V. Castranova, E. Kisin, D. Diane Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, P. Baron, Exposure to carbon nanotube material: assessment of nanotubecytotoxicity using human keratinocyte cells. Toxicol. Environ. Health. A. 66 (2003) 1909-1926.
DOI: 10.1080/713853956
Google Scholar
[55]
H.Y. Lee, H.K. Park, Y.M. Lee, K. Kim, S.B. Park, A practical procedure forproducing silver nanocoated fabric and its an tibacterial evaluation for biomedical applications. Chem. Commun. 28 (2007) 2959-2961.
DOI: 10.1039/b703034g
Google Scholar
[56]
B.D. Chithrani, A.A. Ghazani, W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano. Lett. 6 (2006) 662-668.
DOI: 10.1021/nl052396o
Google Scholar
[57]
L. Sun, Y. Li, X. Liu, M. Jin, Z. Long, Z. Du, Guo, C.; Huang, P.; Sun, Z. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol. In. Vitro. 25 (2011) 1619-1629.
DOI: 10.1016/j.tiv.2011.06.012
Google Scholar
[58]
R. Foldbjerg, D.A. Dang, H. Autrup, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85 (2011) 743-750.
DOI: 10.1007/s00204-010-0545-5
Google Scholar
[59]
R. Kapoor, P. Kakkar, Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes. PLoS. One. 7 (2012) e41663.
DOI: 10.1371/journal.pone.0041663
Google Scholar
[60]
M.S. Ahamad, S. Siddiqui, A. Jafri, Inductiong of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS genetration cell cycle arrest. PLoS. One. 9 (2014) e110003.
DOI: 10.1371/journal.pone.0110003
Google Scholar
[61]
M. Zhao, W.K. Mydlarz, S. Zhou, J. Califano, Head and neck cancer cell lines are resistant to mitochondrial-depolarization-induced apoptosis. ORL. J. Otorhinolaryngol. Relat. 70 (2008) 257-263.
DOI: 10.1159/000133280
Google Scholar
[62]
M.B. Vallerga, S.F. Mansilla, M.B. Federico, A.P. Bertolin, V. Gottifredi, Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation. Proc. Nat. Acad. Sci. USA. 112 (2015) 6624-6633.
DOI: 10.1073/pnas.1508543112
Google Scholar
[63]
R.A. Baldock, M. Day, O.J. Wilkinson, R. Cloney, P. Jeggo, A. Oliver, F. Watts, L. Pearl, ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX. Cell. Rep. 13 (2015) 2081-2089.
DOI: 10.1016/j.celrep.2015.10.074
Google Scholar
[64]
C.F. Lu, X.Y. Yuan, L.Z. Li, W. Zhou, J. Zhao, L.M. Wang, S.Q. Peng, Combined exposure to nano-silica and lead induced potentiation of oxidative stress and DNA damage in human lung epithelial cells. Ecotoxicol. Environ. Saf. 122 (2015) 537-544.
DOI: 10.1016/j.ecoenv.2015.09.030
Google Scholar
[65]
B. Sambandam, T. Devasena, V.I. Islam, B.M. Prakhya, Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines. Indian. J. Exp. Biol. 53 (2015) 585-593.
Google Scholar
[66]
X. Yao, C. Huang, X. Chen, Z. Yi, L. Sanche, Chemical Radiosensitivity of DNA Induced by Gold Nanoparticles. J. Biomed. Nanotechnol. 11 (2015) 478-485.
DOI: 10.1166/jbn.2015.1922
Google Scholar
[67]
B. Levine, Cell biology: Autophagy and cancer. Nature. 446 (2007) 745-747.
Google Scholar
[68]
C.M. Walsh, A.L. Edinger, The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 236 (2010) 95-109.
DOI: 10.1111/j.1600-065x.2010.00919.x
Google Scholar
[69]
W. Liao, Z. Yu, Z. Lin, Z. Lei, Z. Ning, J.M. Regenstein, J. Yang, J. Ren, Biofunctionalization of selenium nanoparticle with dictyophora indusiata polysaccharide and its antiproliferative activity through death-receptor and mitochondria-mediated apoptotic pathways. Sci. Rep. 5 (2015) 18629.
DOI: 10.1038/srep18629
Google Scholar
[70]
D.B. Zorov, C.R. Filburn, L.O. Klotz , J.L. Zweier , S.J. Sollott , Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192 (2000) 1001-1014.
DOI: 10.1084/jem.192.7.1001
Google Scholar
[71]
A. Fico, G. Manganelli , L. Cigliano, P. Bergamo, P. Abrescia, C. Franceschi, G. Martini, S. Filosa, 2-deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathione. Free. Radic. Biol. Med. 45 (2008) 211-217.
DOI: 10.1016/j.freeradbiomed.2008.04.017
Google Scholar
[72]
B. Liu, Y. Chen, D.K. St Clair. ROS and p.53: a versatile partnership. Free. Radic. Biol. Med. 44 (2008) 1529-1535.
Google Scholar
[73]
V. Sharma, D. Anderson, A. Dhawan, Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 17 (2012) 852-870.
DOI: 10.1007/s10495-012-0705-6
Google Scholar