[1]
S.K. Jaganathan, E. Supriyanto, S. Murugesan, et al. Biomaterials in cardiovascular research: Applications and clinical complications, BioMed Res Int. (2014).
Google Scholar
[2]
M. Sheikholeslam, M.E.E. Wright, M.G. Jeschke, et al. Biomaterials for skin substitutes, Adv Health. Mater., 7 (2017).
Google Scholar
[3]
A. Aherwar, A.K. Singh, A. Patnaik, Cobalt Based Alloy: A Better Choice Biomaterial for Hip Implants, Trends Biomater. Artif. Organs. 30 (2016) 50-55.
Google Scholar
[4]
B.F. El-Zayat, S. Ruchholtz, T. Efe, et al. Results of titanium locking plate and stainless-steel cerclage wire combination in femoral fractures, Indian J. Orthop. 47 (2013) 454–458.
DOI: 10.4103/0019-5413.118200
Google Scholar
[5]
M. Fellah, M, Laba, O. Assalaїz, et al. Tribological behaviour of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis, Adv. Tribology. (2014).
DOI: 10.1155/2014/451387
Google Scholar
[6]
G. Renganathan, N. Tanneru, S.L. Madurai, Orthopaedical and biomedical applications of titanium and zirconium metals. In: Fundamental biomaterials: metals, Sawston: Woodhead Publishing. (2018) 211–241.
DOI: 10.1016/b978-0-08-102205-4.00010-6
Google Scholar
[7]
S. Ghosh, S. Sanghavi, P. Sancheti, Metallic biomaterial for bone support and replacement. In Fundamental Biomaterials: Metals. (2018). https://doi.org/10.1016/B978-0-08-102205-4.00006-4.
DOI: 10.1016/b978-0-08-102205-4.00006-4
Google Scholar
[8]
B. Priyadarshini, M. Rama, U. Chetan Vijayalakshmi, Bioactive coating as a surface modification technique for biocompatible metallic implants: A review, J. Asian Ceram. Soc. 7 (2019) 397–406.
DOI: 10.1080/21870764.2019.1669861
Google Scholar
[9]
G. Singh, H. Singh, B.S. Sidhu, Corrosion behaviour of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application, Applied Surface Science. 284 (2013) 811– 818.
DOI: 10.1016/j.apsusc.2013.08.013
Google Scholar
[10]
T.D.T. Nguyen, Y.S. Jang, M.H. Lee, et al. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates, Journal of Applied Biomaterials & Functional Materials. (2019) 1-10.
DOI: 10.1177/2280800019826517
Google Scholar
[11]
K.L. Ong, B.M. Yun, J.B. White, New biomaterials for orthopaedic implants, Orthop. Res. Rev. 7 (2015) 107-130. https://doi.org/10.2147/ORR.S63437.
Google Scholar
[12]
D.M. Vranceanu, A.C. Parau, C.M. Cotrut, A.E. Kiss, L.R. Constantin, V. Braic, A. Vladescu, In vitro evaluation of Ag doped hydroxyapatite coatings in acellular media, Ceramics International (2019), Doi: https://doi.org/10.1016/j.ceramint.2019.02.191.
DOI: 10.1016/j.ceramint.2019.02.191
Google Scholar
[13]
I. Ullah, M.A. Siddiqui, H. Liu, S.K. Kolawole, J. Zhang, S. Zhang, L. Ren, K. Yang, Mechanical, biological, and antibacterial characteristics of plasma-sprayed (Sr, Zn) substituted Hydroxyapatite coating, ACS Biomater. Sci. Eng. 6 (2020) 1355–1366.
DOI: 10.1021/acsbiomaterials.9b01396
Google Scholar
[14]
M.N. Muhammad Syazwan, B.I. Yanny Marliana, The influence of simultaneous divalent cations (Mg2+, Co2+ and Sr2+) substitution on the physico-chemical properties of carbonated hydroxyapatite, Ceram. Int. 45 (2019) 14783–14788.
DOI: 10.1016/j.ceramint.2019.04.208
Google Scholar
[15]
C. Piconi, V. De Santis, G. Maccauro, Clinical outcomes of ceramicized ball heads in total hip replacement bearings: a literature review, J. Appl. Biomater. Funct. Mater. 15 (2016) 11–19.
DOI: 10.5301/jabfm.5000330
Google Scholar
[16]
M. Croes, B. Akhavan, O. Sharifahmadian, et al. A multifaceted biomimetic interface to improve the longevity of orthopaedic implants, Acta. Biomaterialia. (2020). Doi: https://doi.org/10.1016/j.actbio.2020.04.020.
DOI: 10.1016/j.actbio.2020.04.020
Google Scholar
[17]
B. Akhavana, M. Croes, G. Steven, et al. Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications, Applied Materials Today. 16 (2019) 456–473.
DOI: 10.1016/j.apmt.2019.07.002
Google Scholar
[18]
Information on www.fortunebussinessinsights.com/orthopaedicdevicesmarket.
Google Scholar
[19]
Information on www.medgadget.com/medical technology news, medical devices market size, future scope, demands and projected industry growth by (2026).
Google Scholar
[20]
M. Akram, R. Ahmed, I. Shakir, et al., Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci. 49 (2014) 1461–1475.
DOI: 10.1007/s10853-013-7864-x
Google Scholar
[21]
B. Burnat, M. Walkowiak-Przybyło, T. Błaszczyk, et al. Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution, Acta. of Bioengineering and Biomechanics Original paper. 15 (2013) 1-9.
Google Scholar
[22]
A. Oyane, M. Kakehara, I. Sakamaki, et al. Biomimetic Apatite Coating on Yttria- Stabilized Tetragonal Zirconia Utilizing Femtosecond Laser Surface Processing, Surf. Coat. Technol. (2016). doi:10.1016/ j.surfcoat.2016.03.075.
DOI: 10.1016/j.surfcoat.2016.03.075
Google Scholar
[23]
B.G.X. Zhang, D.E. Myers, G.G. Wallace, et al. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings, Int. J. Mol. Sci. 15 (2014) 11878-11921.
DOI: 10.3390/ijms150711878
Google Scholar
[24]
M. Tlotleng, E. Akinlabi, M. Shukla, et al. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process, Materials Science and Engineering C. 43 (2014) 189–198.
DOI: 10.1016/j.msec.2014.06.032
Google Scholar