Functional Finishing of Barkcloth for Antimicrobial Properties Using Zinc Oxide Nanoparticles

Article Preview

Abstract:

Barkcloth a naturally occurring cellulosic non-woven fabric has recently obtained attention within the scientific community for end use applications in various industries for instance automobile, household furnishing and construction owing to its robust mechanical, thermal and sound absorption properties. In this work, barkcloth was treated with different concentrations of zinc oxide nanoparticles which were deposited with the pad-dry-cure procedure. The Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were chosen for the evaluation of the anti-microbial efficacy of Zinc oxide Nanoparticles (ZNPs). The coated barkcloth samples with ZNPs concentration 0.6 g/L optimally performed against the two most common resistant bacteria i.e. the gram +ve and gram –ve bacteria, with the gram negative E-coli bacteria demonstrating a high susceptibility to the ZNPs than gram positive S-aureus.

You might also be interested in these eBooks

Info:

Pages:

75-79

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Morais, R.M. Guedes, Antimicrobial Approaches for Textiles : From Research to Market, (2016) 1–21.

Google Scholar

[2] Y. Gao, R. Cranston, Recent Advances in Antimicrobial Treatments of Textiles, Text. Res. J. 78 (2008) 60–72.

Google Scholar

[3] M. Naebe, A.N.M.A. Haque, A. Haji, Plasma-assisted antimicrobial finishing of textiles: A review, Engineering. (2021).

Google Scholar

[4] V. Bhandari, S. Jose, P. Badanayak, A. Sankaran, V. Anandan, Antimicrobial finishing of metals, metal oxides, and metal composites on textiles: a systematic review, Ind. Eng. Chem. Res. 61 (2022) 86–101.

DOI: 10.1021/acs.iecr.1c04203

Google Scholar

[5] A. Reshma, V. Brindha Priyadarisini, Eco friendly antimicrobial finishing of textiles using bioactive metabolite from endophytic Streptomyces fradiae CQLW against bio deterioration, J. Text. Inst. 112 (2021) 902–913.

DOI: 10.1080/00405000.2020.1788750

Google Scholar

[6] S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Silver nanoparticles as an effective disinfectant: A review, Mater. Sci. Eng. C. 97 (2019) 954–965.

DOI: 10.1016/j.msec.2018.12.102

Google Scholar

[7] S. Sütterlin, Aspects of bacterial resistance to silver, (2015).

Google Scholar

[8] A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, Bacterial resistance to silver nanoparticles and how to overcome it, Nat. Nanotechnol. 13 (2018) 65.

DOI: 10.1038/s41565-017-0013-y

Google Scholar

[9] J.L. Hobman, L.C. Crossman, Bacterial antimicrobial metal ion resistance, J. Med. Microbiol. 64 (2015) 471–497.

DOI: 10.1099/jmm.0.023036-0

Google Scholar

[10] R. Singh, U.U. Shedbalkar, S.A. Wadhwani, B.A. Chopade, Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications, Appl. Microbiol. Biotechnol. 99 (2015) 4579–4593.

DOI: 10.1007/s00253-015-6622-1

Google Scholar

[11] S. Rwawiire, B. Tomkova, J. Militky, A. Jabbar, B.M. Kale, Development of a biocomposite based on green epoxy polymer and natural cellulose fabric (bark cloth) for automotive instrument panel applications, Compos. Part B Eng. 81 (2015) 149–157.

DOI: 10.1016/j.compositesb.2015.06.021

Google Scholar

[12] S. Rwawiire, B. Tomkova, J. Militky, L. Hes, B.M. Kale, Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth), Appl. Acoust. 116 (2017) 177–183.

DOI: 10.1016/j.apacoust.2016.09.027

Google Scholar

[13] S. Akbar, I. Tauseef, F. Subhan, N. Sultana, I. Khan, U. Ahmed, K.S. Haleem, An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential, Inorg. Nano-Metal Chem. 50 (2020) 257–271.

DOI: 10.1080/24701556.2019.1711121

Google Scholar

[14] A.M. Shehabeldine, A.H. Hashem, A.R. Wassel, M. Hasanin, Antimicrobial and antiviral activities of durable cotton fabrics treated with nanocomposite based on zinc oxide nanoparticles, acyclovir, nanochitosan, and clove oil, Appl. Biochem. Biotechnol. 194 (2022) 783–800.

DOI: 10.1007/s12010-021-03649-y

Google Scholar

[15] E. Darvishi, D. Kahrizi, E. Arkan, Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods, J. Mol. Liq. 286 (2019) 110831.

DOI: 10.1016/j.molliq.2019.04.108

Google Scholar

[16] B. Madhukar, J. Wiener, J. Militky, S. Rwawiire, R. Mishra, K.I. Jacob, Y. Wang, Coating of cellulose-TiO 2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness, Carbohydr. Polym. 150 (2016) 107–113.

DOI: 10.1016/j.carbpol.2016.05.006

Google Scholar

[17] P. Ganguly, C. Byrne, A. Breen, S.C. Pillai, Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances, Appl. Catal. B Environ. 225 (2018) 51–75.

DOI: 10.1016/j.apcatb.2017.11.018

Google Scholar

[18] K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions, Ceram. Int. 36 (2010) 497–506.

DOI: 10.1016/j.ceramint.2009.09.026

Google Scholar