Fabrication and Characterization of Alginate Hydrogels for Control Release System of Catechin-Derived Tea Leave Extract

Article Preview

Abstract:

Polyphenolic chemicals found in tea leaves are frequently used in pharmaceutics and the food industry. Catechin is a polyphenol that has antimicrobial, antioxidant, and antibacterial effects, as well as other health advantages. The goal of this study was to create a catechin-encapsulated alginate hydrogel (Cate-ALG) that would protect catechin from degradation and bioactivity loss in stressful environments while also delivering catechin. The antioxidant ability of catechin was found to be greater than that of vitamin C using the 2,2-diphenyl-1-pierylhyrazyl assay. The FT-IR spectra revealed the distinct peaks of catechin and alginate. Additionally, due to the hydrogen bond interaction between alginate and catechin molecules, frequency downshifting was observed in the carbonyl and hydroxyl regions. Furthermore, release profile revealed a burst release of 5% catechin-ALG in the first 25 min. On the other hand, the 3% Cate-ALG approached the controlled release profile of catechin and increased the release time by more than 40 minutes. The catechin in alginate hydrogel has the potential for controlled release via transdermal and wound dressing applications.

You might also be interested in these eBooks

Info:

Pages:

97-107

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Sharma, K. V. Kosankar, Green Tea in Green World an Updated Review, Pharmatutor. 6 (2018) 09.

DOI: 10.29161/pt.v6.i3.2018.9

Google Scholar

[2] S. M. Chacko, P. T. Thambi, R. Kuttan, I. Nishigaki, Beneficial effects of green tea: A literature review, Chinese Medicine. 5 (2010) 13.

DOI: 10.1186/1749-8546-5-13

Google Scholar

[3] N. B. Sadeer, D. Montesano, S. Albrizio, G. Zengin, M. F. Mahomoodally, The versatility of antioxidant assays in food science and safety—chemistry, applications, strengths, and limitations, Antioxidants. 9 (2020) 1–39.

DOI: 10.3390/antiox9080709

Google Scholar

[4] M. Grzesik, K. Naparło, G. Bartosz, I. Sadowska-Bartosz, Antioxidant properties of catechins: Comparison with other antioxidants, Food Chemistry. 241 (2018) 480–492.

DOI: 10.1016/j.foodchem.2017.08.117

Google Scholar

[5] A. Masek, Antioxidant and Antiradical Properties of Green Tea Extract Compounds, International Journal of Electrochemical Science. 12 (2017) 6600–6610.

DOI: 10.20964/2017.07.06

Google Scholar

[6] V. K. Sharma, A. Bhattacharya, A. Kumar, H. K. Sharma, Health Benefits of Tea Consumption, Tropical Journal of Pharmaceutical Research. 6 (2007) 785–792.

Google Scholar

[7] M. Esmaeilpour-Bandboni, Z. Seyedpourchafi, E. Kahneh, The Effect of Green Tea Drinking on the Depression of Elderly People, The Journal for Nurse Practitioners. 17 (2021) 983–987.

DOI: 10.1016/j.nurpra.2021.06.007

Google Scholar

[8] A. B. Sharangi, Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review, Food Research International. 42 (2009) 529–535.

DOI: 10.1016/j.foodres.2009.01.007

Google Scholar

[9] N. T. Zaveri, Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications, Life Sciences. 78 (2006) 2073–(2080).

DOI: 10.1016/j.lfs.2005.12.006

Google Scholar

[10] V. Sencadas, Energy Harvesting Applications from Poly(ε-caprolactone) Electrospun Membranes, ACS Applied Polymer Materials. 2 (2020) 2105–2110.

DOI: 10.1021/acsapm.0c00209

Google Scholar

[11] Z. Liu, M. E. Bruins, W. J. C. de Bruijn, J.-P. Vincken, A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation, Journal of Food Composition and Analysis. 86 (2020) 103385.

DOI: 10.1016/j.jfca.2019.103385

Google Scholar

[12] H. Wang, G. J. Provan, K. Helliwell, Tea flavonoids: their functions, utilisation and analysis, Trends in Food Science & Technology. 11 (2000) 152–160.

DOI: 10.1016/s0924-2244(00)00061-3

Google Scholar

[13] W. R. Bidlack, Green Tea: Health Benefits and Applications., Journal of the American College of Nutrition. 20 (2001) 656–656.

DOI: 10.1080/07315724.2001.10719164

Google Scholar

[14] L. Jakobek, Interactions of polyphenols with carbohydrates, lipids and proteins, Food Chemistry. 175 (2015) 556–567.

DOI: 10.1016/j.foodchem.2014.12.013

Google Scholar

[15] M. A. Krook, A. E. Hagerman, Stability of polyphenols epigallocatechin gallate and pentagalloyl glucose in a simulated digestive system, Food Research International. 49 (2012) 112–116.

DOI: 10.1016/j.foodres.2012.08.004

Google Scholar

[16] N. Li, L. S. Taylor, M. G. Ferruzzi, L. J. Mauer, Kinetic Study of Catechin Stability: Effects of pH, Concentration, and Temperature, Journal of Agricultural and Food Chemistry. 60 (2012) 12531–12539.

DOI: 10.1021/jf304116s

Google Scholar

[17] Q. Li, M. Duan, D. Hou, X. Chen, J. Shi, W. Zhou, Fabrication and characterization of Ca(II)-alginate-based beads combined with different polysaccharides as vehicles for delivery, release and storage of tea polyphenols, Food Hydrocolloids. 112 (2021) 106274.

DOI: 10.1016/j.foodhyd.2020.106274

Google Scholar

[18] M. Sabaghi, S. Z. Hoseyni, S. Tavasoli, M. R. Mozafari, I. Katouzian, Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review, Colloids and Surfaces B: Biointerfaces. 204 (2021) 111781.

DOI: 10.1016/j.colsurfb.2021.111781

Google Scholar

[19] A. Belščak-Cvitanović et al., Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin, Food Hydrocolloids. 57 (2016) 139–152.

DOI: 10.1016/j.foodhyd.2016.01.020

Google Scholar

[20] S. C. S. R. de Moura, C. L. Berling, S. P. M. Germer, I. D. Alvim, M. D. Hubinger, Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles, Food Chemistry. 241 (2018) 317–327.

DOI: 10.1016/j.foodchem.2017.08.095

Google Scholar

[21] A. Bušić et al., Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials, Food Research International. 111 (2018) 244–255.

DOI: 10.1016/j.foodres.2018.05.034

Google Scholar

[22] M. Sabaghi, Y. Maghsoudlou, M. Kashiri, A. Shakeri, Evaluation of release mechanism of catechin from chitosan-polyvinyl alcohol film by exposure to gamma irradiation, Carbohydrate Polymers. 230 (2020) 115589.

DOI: 10.1016/j.carbpol.2019.115589

Google Scholar

[23] N. T. T. Uyen, Z. A. A. Hamid, N. X. T. Tram, N. Ahmad, Fabrication of alginate microspheres for drug delivery: A review, International Journal of Biological Macromolecules. 153 (2020) 1035–1046.

DOI: 10.1016/j.ijbiomac.2019.10.233

Google Scholar

[24] V. Lavelli, P. S. C. Sri Harsha, Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents, Food Research International. 119 (2019) 822–828.

DOI: 10.1016/j.foodres.2018.10.065

Google Scholar

[25] Y. Qin, Gel swelling properties of alginate fibers, Journal of Applied Polymer Science. 91 (2004).

Google Scholar

[26] J. A. MacEdo, V. Battestin, M. L. Ribeiro, G. A. MacEdo, Increasing the antioxidant power of tea extracts by biotransformation of polyphenols, Food Chemistry. 126 (2011) 491–497.

DOI: 10.1016/j.foodchem.2010.11.026

Google Scholar

[27] Q. V. Vuong, J. B. Golding, M. Nguyen, P. D. Roach, Extraction and isolation of catechins from tea, Journal of Separation Science. 33 (2010).

DOI: 10.1002/jssc.201000438

Google Scholar

[28] W. Brand-Williams, M. E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Science and Technology. 28 (1995) 25–30.

DOI: 10.1016/s0023-6438(95)80008-5

Google Scholar

[29] S. B. Kedare, R. P. Singh, Genesis and development of DPPH method of antioxidant assay, Journal of Food Science and Technology. 48 (2011) 412–422.

DOI: 10.1007/s13197-011-0251-1

Google Scholar

[30] S. C. T. Nicklisch, J. H. Waite, Optimized DPPH assay in a detergent-based buffer system for measuring antioxidant activity of proteins, MethodsX. 1 (2014) 233–238.

DOI: 10.1016/j.mex.2014.10.004

Google Scholar

[31] G. Miliauskas, P. R. Venskutonis, T. A. Van Beek, Screening of radical scavenging activity of some medicinal and aromatic plant extracts, Food Chemistry. 85 (2004) 231–237.

DOI: 10.1016/j.foodchem.2003.05.007

Google Scholar

[32] F. Abasalizadeh et al., Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting, Journal of Biological Engineering. 14 (2020).

DOI: 10.1186/s13036-020-0227-7

Google Scholar

[33] Y. Chai, L.-H. Mei, G.-L. Wu, D.-Q. Lin, S.-J. Yao, Gelation conditions and transport properties of hollow calcium alginate capsules, Biotechnology and Bioengineering. 87 (2004) 228–233.

DOI: 10.1002/bit.20144

Google Scholar

[34] P. A. Shruthi, H. A. Pushpadass, F. Magdaline Eljeeva Emerald, B. Surendra Nath, N. Laxmana Naik, Formulation and characterization of catechin‐loaded proniosomes for food fortification, Journal of the Science of Food and Agriculture. 101 (2021) 2439–2448.

DOI: 10.1002/jsfa.10868

Google Scholar

[35] J. Xia et al., Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments, Biophysical Chemistry. 256 (2020) 106282.

DOI: 10.1016/j.bpc.2019.106282

Google Scholar

[36] M. Zhang, X. Zhao, Alginate hydrogel dressings for advanced wound management, International Journal of Biological Macromolecules. 162 (2020) 1414–1428.

DOI: 10.1016/j.ijbiomac.2020.07.311

Google Scholar

[37] A. Belščak-Cvitanović et al., Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract, Food Hydrocolloids. 51 (2015) 361–374.

DOI: 10.1016/j.foodhyd.2015.05.039

Google Scholar

[38] H. J. You, J. Li, C. Zhou, B. Liu, Y. G. Zhang, A honeycomb composite of mollusca shell matrix and calcium alginate, Colloids and Surfaces B: Biointerfaces. 139 (2016) 100–106.

DOI: 10.1016/j.colsurfb.2015.12.006

Google Scholar