Numerical and Experimental Evaluation of Biomechanical Behavior of Single Implant-Supported Restorations Based on Angled Abutments with Different Gingival Heights

Article Preview

Abstract:

The effect of angle abutment on the stress distribution of bone tissue around implant is not clear. Using abutments with different gingival height (GH) may cause changes in the stress distribution of the implant and implant-bone interface. This study aims to investigate whether angled abutments with varied GH have a significant effect on stress distribution of surrounding bone and the biomechanical behavior of the implant system. Three implant-supported restoration models were designed by changing the angled abutment GH (1 mm, 3 mm and 5 mm). Force of 200N was applied on the crown surface at 45° to the long axis of the implants. The biomechanical performance of the restorations (including implants and angled abutments) and stress distribution pattern were evaluated by finite element analysis (FEA). Results showed that angled abutments with larger GH resulted in increased stresses on the implant and implant-bone interface.

You might also be interested in these eBooks

Info:

Pages:

111-119

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Brügger, O E.; Bornstein, M. M., Kuchler, U.; Janner, S. F. M.; Chappuis, V.; & Buser, D. Implant therapy in a surgical specialty clinic: an analysis of patients, indications, surgical procedures, risk factors, and early failures. The International journal of oral & maxillofacial implants. 30 (2015) 151-160.

DOI: 10.11607/jomi.3769

Google Scholar

[2] Swamidass, R. S.; Kan, J. Y. K.; Kattadiyil, M. T.; Goodacre, C. J.; & Lozada, J. Abutment screw torque changes with straight and angled screw-access channels. Journal of Prosthetic Dentistry. (2020).

DOI: 10.1016/j.prosdent.2020.01.018

Google Scholar

[3] Cavallaro, J.; & Greenstein, G. Angled implant abutments: a practical application of available knowledge. The Journal of the American Dental Association. 142 (2011) 150-158.

DOI: 10.14219/jada.archive.2011.0057

Google Scholar

[4] Dubois, G.; Daas, M.; Bonnet, A. S.; & Lipinski, P. Biomechanical study of a prosthetic solution based on an angled abutment: case of upper lateral incisor. Medical Engineering & Physics. 29 (2007) 989-998.

DOI: 10.1016/j.medengphy.2006.10.017

Google Scholar

[5] Sethi, A.; Kaus, T.; Sochor, P.; Axmann-Krcmar, D.; & Chanavaz, M. Evolution of the concept of angulated abutments in implant dentistry: 14-year clinical data. Implant Dentistry. 11 (2002) 41-51.

DOI: 10.1097/00008505-200201000-00013

Google Scholar

[6] Kao RT, Curtis DA, Kim DM, Lin GH, Wang CW, Cobb CM, et al. American Academy of Periodontology best evidence consensus statement on modifying periodontal phenotype in preparation for orthodontic and restorative treatment. Journal of Periodontology. 91 (2020) 289-298.

DOI: 10.1002/jper.19-0577

Google Scholar

[7] Lee WZ, Ong MMA, Yeo AB. Gingival profiles in a select Asian cohort: a pilot study. Journal of Investigative and Clinical Dentistry. 9 (2018) e12269.

DOI: 10.1111/jicd.12269

Google Scholar

[8] Qin, Yue, Burak, et al. Use of an attachment system with angulated abutments and polyetheretherketone inserts to retain a maxillary overdenture: A clinical report. The Journal of prosthetic dentistry. 124 (2019) 129-134.

DOI: 10.1016/j.prosdent.2019.07.013

Google Scholar

[9] Spinato S, Galindo-Moreno P, Bernardello F, Zaffe D. Minimum abutment height to eliminate bone loss: influence of implant neck design and platform switching. International Journal of Oral & Maxillofacial Implants. 33 (2018) 405-411.

DOI: 10.11607/jomi.5604

Google Scholar

[10] Blanco J, Pico A, Caneiro L, Nóvoa L, Batalla P, Martín-Lancharro P. Effect of abutment height on interproximal implant bone level in the early healing: a randomized clinical trial. Clinical Oral Implants Research. 29 (2018) 108-117.

DOI: 10.1111/clr.13108

Google Scholar

[11] Chen Z , Lin C Y , Li J , et al. Influence of abutment height on peri-implant marginal bone loss: A systematic review and meta-analysis. The Journal of Prosthetic Dentistry. 122 (2019) 14-21.

DOI: 10.1016/j.prosdent.2018.10.003

Google Scholar

[12] Cinel, S.; Celik, E.; Sagirkaya, E.; & Sahin, O. Experimental evaluation of stress distribution with narrow diameter implants: A finite element analysis. The Journal of Prosthetic Dentistry. 119 (2018) 417-425.

DOI: 10.1016/j.prosdent.2017.04.024

Google Scholar

[13] Roy, S.; Das, M.; Chakraborty, P.; Biswas, J. K.; & Roychowdhury, A. Optimal selection of dental implant for different bone conditions based on the mechanical response. Acta of Bioengineering & Biomechanics. 19 (2017) 11-20.

Google Scholar

[14] Cali, M.; Zanetti, E. M.; Oliveri, S. M.; Asero, R.; Ciaramella, S.; & Martorelli, M.. Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems. Dental Materials. 34 (2018) 460-469.

DOI: 10.1016/j.dental.2018.01.012

Google Scholar

[15] SORO, N.; BRASSART, L.; CHEN, Y.; VEIDT, M.; ATTAR, H.; & DARGUSCH, M. S. FINITE ELEMENT ANALYSIS OF POROUS COMMERCIALLY PURE TITANIUM FOR BIOMEDICAL IMPLANT APPLICATION. MATERIALS SCIENCE AND ENGINEERING: A. 725 (2018) 43–50.

DOI: 10.1016/j.msea.2018.04.009

Google Scholar

[16] JAYANTA, KUMAR, BISWAS, TIKESHWAR, PRASAD, & SAHU. DESIGN FACTORS OF LUMBAR PEDICLE SCREWS UNDER BENDING LOAD: A FINITE ELEMENT ANALYSIS. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING. 39 (2019) 52-62.

DOI: 10.1016/j.bbe.2018.10.003

Google Scholar

[17] DONG, WU, KEBIN, TIAN, JIANG, & CHEN. A FURTHER FINITE ELEMENT STRESS ANALYSIS OF ANGLED ABUTMENTS FOR AN IMPLANT PLACED IN THE ANTERIOR MAXILLA. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE. 2015 (2015) 1-9.

DOI: 10.1155/2015/560645

Google Scholar

[18] Okumura, N.; Stegaroiu, R.; Kitamura, E.; Kurokawa, K.; & Nomura, S. Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis. Journal of Prosthodontic Research. 5 (2010) 133-142.

DOI: 10.1016/j.jpor.2009.12.004

Google Scholar

[19] Bordin, D.; Bergamo, E. T. P.; Fardin, V. P.; Coelho, P. G.; & Bonfante, E. A. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: in vitro and in silico analysis. Journal of the Mechanical Behavior of Biomedical Materials. 71 (2017) 244-249.

DOI: 10.1016/j.jmbbm.2017.03.022

Google Scholar