[1]
R.Ladj, A. Bitar, M.Eissa,Y. Mugnier, R.Le Dantec, H. Fessi, Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications,J Mater Chem B . 10 (2013)1381-96.
DOI: 10.1039/c2tb00301e
Google Scholar
[2]
S.Chen, X.Hao , X.Liang, Q,Zhang, C.Zhang ,G, Zhou, Inorganic nanomaterials as carriers for drug delivery, J. biomed. nanotechnol. 1(2016)1-27.
DOI: 10.1166/jbn.2016.2122
Google Scholar
[3]
P.Pandey ,M. Dahiya, A brief review on inorganic nanoparticles. J Crit Rev.3(2016)18-26.
Google Scholar
[4]
K.Varaprasad M.M. Yallapu, D.Núñez, P.Oyarzún, M. López, T.Jayaramudu, Generation of engineered core–shell antibiotic nanoparticles,RSC Adv.15 (2019)8326-32.
DOI: 10.1039/c9ra00536f
Google Scholar
[5]
A.Abdal Dayem, M.K. Hossain, S.B. Lee, K.Kim, S.K. Saha, G.M Yang G, The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles, Int.J.Mol.Sci.1 (2017)120.
DOI: 10.3390/ijms18010120
Google Scholar
[6]
A.Hatamie, A.Khan, M.Golabi, A.P. Turner, V.Beni, W.C. Mak, Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material, Langmuir. 39(2015)10913-21.
DOI: 10.1021/acs.langmuir.5b02341
Google Scholar
[7]
V.Marassi, L. Di Cristo, S.G.I Smith, S. Ortelli, M.Blosi, A.L. Costa, Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents, R Soc Open Sci. 1(2018)171113.
DOI: 10.1098/rsos.171113
Google Scholar
[8]
N.Beyth, Y.Houri-Haddad, A. Domb , W.Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evid. basedComplement.Altern. 2015;(2015).
DOI: 10.1155/2015/246012
Google Scholar
[9]
R.Javed, M. Zia, S.Naz, S.O. Aisida, Ain Nu, Q.Ao,Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnology. 1(2020)172.
DOI: 10.1186/s12951-020-00704-4
Google Scholar
[10]
A.Ojha. Nanomaterials for removal of waterborne pathogens: opportunities and challenges. Waterborne Pathogens, Elsevier. (2020) 385-432.
DOI: 10.1016/b978-0-12-818783-8.00019-0
Google Scholar
[11]
J.M. Montenegro, V. Grazu, A. Sukhanova, S. Agarwal, J.Fuente, I. Nabiev, Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery, Adv.Drug.Deliv.Rev. (2012) 65.
DOI: 10.1016/j.addr.2012.12.003
Google Scholar
[12]
H.Agarwal, S.Menon , S.V. Kumar, S. Rajeshkumar, Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route, Chem.biol interact. 286(2018)60-70.
DOI: 10.1016/j.cbi.2018.03.008
Google Scholar
[13]
Y.Zhang , T.R Nayak, H. Hong,W. Cai, Biomedical applications of zinc oxide nanomaterials, Curr. Mol. Med. 10(2013)1633-45.
Google Scholar
[14]
J.L. Venkataraju, R.Sharath, M. Chandraprabha, E.Neelufar, A. Hazra, M.Patra, Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles, J.Biochem.Technol. 5(2014)151-4.
Google Scholar
[15]
Y.N. Slavin, J.Asnis, U.O. Häfeli, H.Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J.Nanobiotechnology. 1(2017)1-20.
DOI: 10.1186/s12951-017-0308-z
Google Scholar
[16]
S.Yin, J.Liu, Y.Kang, Y. Lin, D.Li, L.Shao L,Interactions of nanomaterials with ion channels and related mechanisms,Br. J. Pharmacol. 176(2019)3754-74.
DOI: 10.1111/bph.14792
Google Scholar
[17]
M. Arakha, M. Saleem, B.C. Mallick, S. Jha, The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle, Sci.Rep. 5(2015)9578.
DOI: 10.1038/srep09578
Google Scholar
[18]
J.Baranauskaite, G. Duman, G. Corapcıoğlu, A. Baranauskas, A.Taralp, L.Ivanauskas, Liposomal incorporation to improve dissolution and stability of rosmarinic acid and carvacrol extracted from Oregano (O. onites L.), BioMed. Res. Int. (2018).
DOI: 10.1155/2018/6147315
Google Scholar
[19]
M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Photocatalysis and bandgap engineering using ZnO nanocomposites, Adv . Mater. Sci. Eng. (2015).
DOI: 10.1155/2015/934587
Google Scholar
[20]
L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int.J. Nanomedicine. (2017)12:1227.
DOI: 10.2147/ijn.s121956
Google Scholar
[21]
K. Hubenko, S. Yefimova, T. Tkacheva, P. Maksimchuk,I. Borovoy, V. Klochkov, Reactive oxygen species generation in aqueous solutions containing GdVO 4: Eu 3+ nanoparticles and their complexes with methylene blue, Nanoscale Res. lett.1(2018)1-9.
DOI: 10.1186/s11671-018-2514-5
Google Scholar
[22]
V. Lobo, A. Patil, A.Phatak, N. Chandra , Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev. 8(2010)118.
DOI: 10.4103/0973-7847.70902
Google Scholar
[23]
M. Kundu, P. Sadhukhan, N, Ghosh, S.Chatterjee, P. Manna, J. Das J, pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy, J.Adv.Res 18(2019)161-72.
DOI: 10.1016/j.jare.2019.02.036
Google Scholar
[24]
S. Shome, A.D. Talukdar, S.Tewari, S. Choudhury, M.K. Bhattacharya, H. Upadhyaya, Conjugation of micro/nanocurcumin particles to ZnO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia coli and Staphylococcus aureus, Biotechnol. Appl. Biochem. 3(2021)603-15.
DOI: 10.1002/bab.1968
Google Scholar
[25]
P. Khadka, J.Ro, H.Kim, I.Kim, J.T. Kim , H. Kim, Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability, A.J. Pharm Sci. 6(2014)304-16.
DOI: 10.1016/j.ajps.2014.05.005
Google Scholar
[26]
S.B. Ghaffari, M.H. Sarrafzadeh, Z. Fakhroueian, S. Shahriari, M.R. Khorramizadeh, Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: synthesis, characterization, and anticancer assessment, Mater.Sci. Eng: C. 79(2017)465-72.
DOI: 10.1016/j.msec.2017.05.065
Google Scholar
[27]
J. Lee,K.H Choi, J. Min,H.J Kim, J.P. Jee, B.J Park, Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus, Nanomaterials. 11(2017)365.
DOI: 10.3390/nano7110365
Google Scholar
[28]
K.H. Choi, K.C. Nam, S.Y. Lee, G. Cho, J.S. Jung, H.J. Kim H-J, Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles, Nanomaterials. 6(2017)148.
DOI: 10.3390/nano7060148
Google Scholar
[29]
S. Ferraris, X. Zhang, E. Prenesti, I. Corazzari, F.Turci , M.Tomatis, Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic, J. Non-Cryst. Solids.432( 2016)167-75.
DOI: 10.1016/j.jnoncrysol.2015.05.023
Google Scholar
[30]
S.A. Rajan, A. Khan, S.Asrar, H.Raza, R.K. Das, N.K. Sahu, Synthesis of ZnO/Fe(3)O(4)/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus, IET nanobiotechnol. 7(2019)682-7.
DOI: 10.1049/iet-nbt.2018.5330
Google Scholar
[31]
R.Da, M. Nayak, G.C. Sahoo, K. Pandey, M. Chawla-Sarkar, V. Das V, Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J.Infect. Chemother, (2019).
DOI: 10.1016/j.jiac.2018.12.006
Google Scholar
[32]
P. Guardia, A. Riedinger, H. Kakwere, F. Gazeau, T.Pellegrino, Magnetic nanoparticles for magnetic hyperthermia and controlled drug delivery, Edited by Daniel Ruiz-Molina, Fernando Novio, and Claudio Roscini. (2015).
DOI: 10.1002/9783527675821.ch06
Google Scholar
[33]
E. Cazares-Cortes, S. Cabana ,C. Boitard ,E. Nehlig , N. Griffete , J. Fresnais J, Recent insights in magnetic hyperthermia: From the hot-spot, effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids, Adv. Drug deliv. Rev. 138(2019)233-46.
DOI: 10.1016/j.addr.2018.10.016
Google Scholar
[34]
J.H. Lee , R. Ivkov, R. Blumenthal , Magnetically triggered drug release from Liposome Embedded gel, J. Nanomedicine Biotherapeutic Discov. 4(2014)1.
DOI: 10.4172/2155-983x.1000130
Google Scholar
[35]
U.Martens, U.Janke, S. Möller , D. Talbot, A. Abou-Hassan , M. Delcea ,Interaction of fibrinogen–magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes. Nanoscale. 38(2020)19918-30.
DOI: 10.1039/d0nr04181e
Google Scholar
[36]
D.R.K. Weerasuriya, S.Bhakta,K. Hiniduma, C.K. Dixit, M. Shen, Z.Tobin, Magnetic Nanoparticles with Surface Nanopockets for Highly Selective Antibody Isolation, ACS. Appl.Bio Mater. 8(2021)6157-66.
DOI: 10.1021/acsabm.1c00502
Google Scholar
[37]
S. Rastogi , J. Jabal, H. Zhang , C. Gibson, K.Haler, Q. You Q, Antibody@Silica Coated Iron Oxide Nanoparticles: Synthesis, Capture of E.coli and Sers Titration of Biomolecules with Antibacterial Silver Colloid, J. Nanomed.Nanotechnol. 2(2011)1000121.
DOI: 10.4172/2157-7439.1000121
Google Scholar
[38]
A.K. Kovach , J.M. Gambino , V.Nguyen , Z.Nelson ,T. Szasz , J.Liao J, Prospective Preliminary In Vitro Investigation of a Magnetic Iron Oxide Nanoparticle Conjugated with Ligand CD80 and VEGF Antibody As a Targeted Drug Delivery System for the Induction of Cell Death in Rodent Osteosarcoma Cells, BioResearch Open Access. 1(2016)299-307.
DOI: 10.1089/biores.2016.0020
Google Scholar
[39]
X.G. Liu ,L. Zhang,S. Lu , D.Q. Liu, L.X. Zhang , X.L. Yu , Multifunctional Superparamagnetic Iron Oxide Nanoparticles Conjugated with Aβ Oligomer-Specific scFv Antibody and Class A Scavenger Receptor Activator Show Early Diagnostic Potentials for Alzheimer's Disease, Int. J.Nanomedicine. 15(2020)4919-32.
DOI: 10.2147/ijn.s240953
Google Scholar
[40]
G.Sanità, B.Carrese, A.Lamberti, Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization, Front. mol. biosci. 7(2020)381.
DOI: 10.3389/fmolb.2020.587012
Google Scholar
[41]
S. Sherin, S. Balachandran , A. Abraham , Curcumin incorporated titanium dioxide nanoparticles as MRI contrasting agent for early diagnosis of atherosclerosis- rat model, Vet.Anim. Sci. 10(2020)100090.
DOI: 10.1016/j.vas.2020.100090
Google Scholar
[42]
V.J. Sawant, R. Kupwade, Functionalization of TiO2 nanoparticles and curcumin loading for enhancement of biological activity, Der Pharm. Lett. 7(2015)37-44.
Google Scholar
[43]
S. Wang, B.B. Zhu, D.Z. Li, X.Z. Fu , L. Shi, Preparation and characterization of TIO2/SPI composite film, Mater.Lett. 83(2012)42–5.
Google Scholar
[44]
Q. He, Y. Huang, B. Lin, S. Wang, A nanocomposite film fabricated with simultaneously extracted protein-polysaccharide from a marine alga and TiO2nanoparticles, J. Appl Phycol. 29(2016)1541-52.
DOI: 10.1007/s10811-016-1030-1
Google Scholar
[45]
L.M. Anaya-Esparza, Z. Villagrán-de la Mora , N. Rodríguez-Barajas, T. Sandoval-Contreras,K. Nuño, D.A. López-de la Mora, Protein–TiO2: A Functional Hybrid Composite with Diversified Applications, Coatings.12( 2020).
DOI: 10.3390/coatings10121194
Google Scholar
[46]
Y. He,Y. Zhang,X. Cai, S. Wang ,Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties, Int. J. biol.Macromol.macromol. 84(2016)153-60.
DOI: 10.1016/j.ijbiomac.2015.12.012
Google Scholar
[47]
X. Fan , K.Chen , X.He , N. Li, J.Huang, K. Tang, Nano-TiO2/collagen-chitosan porous scaffold for wound repairing, Int.J. Biol. Macromol. 91(2016)15-22.
DOI: 10.1016/j.ijbiomac.2016.05.094
Google Scholar
[48]
R. Viter, A. Tereshchenko, V.Smyntyna , J.Ogorodniichuk, N.Starodub, R. Yakimova, Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella, Sensors and Actuators B: Chemical. 252(2017)95-102.
DOI: 10.1016/j.snb.2017.05.139
Google Scholar
[49]
B. Buszewski, K. Rafiſska, P. Pomastowski, J. Walczak, A. Rogowska, Novel aspects of silver nanoparticles functionalization, Colloids and Surfaces A: Colloids. Surf. A .Physicochem. Eng. Asp. 506(2016)170-8.
DOI: 10.1016/j.colsurfa.2016.05.058
Google Scholar
[50]
A.N. Brown, K. Smith, T.A. Samuels ,J. Lu, S.O. Obare, M.E. Scott, Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus, Appl Environ Microbiol. 78(2012)2768-74.
DOI: 10.1128/aem.06513-11
Google Scholar
[51]
A. Loiseau, Asila, G. Boitel-Aullen, M. Lam, Salmain, S. Boujday, Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing, Biosensors. (2019)9-78.
DOI: 10.3390/bios9020078
Google Scholar
[52]
L. Loan Khanh, N. Thanh Truc, N. Tan Dat, N. Thi Phuong Nghi, V. van Toi, N. Thi Thu Hoai N, Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study, Sci Technol Adv Mater.1( 2019)276-90.
DOI: 10.1080/14686996.2019.1585131
Google Scholar
[53]
R. Badhwar, B. Mangla, Y.R. Neupane, Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing.Nanotechnol. 32(2021)50.
DOI: 10.1088/1361-6528/ac2536
Google Scholar
[54]
N. Kumar, L.S.B. Upadhyay , Facile and green synthesis of highly stable l-cysteine functionalized copper nanoparticles, Appl. Surf Sci.385( 2016)225-33.
DOI: 10.1016/j.apsusc.2016.05.125
Google Scholar
[55]
A. Khalid, P. Ahmad, A.I. Alharthi, S. Muhammad, M.U. Khandaker, M.R.I. Faruque MRI, Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PloS one. 5(2021).
DOI: 10.1371/journal.pone.0251082
Google Scholar
[56]
S. Mathew, P.Ganguly, S.Rhatigan, V.Kumaravel, C.Byrne, S.J. Hinder, Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity, Appl. Sci. 11(2018).
DOI: 10.26434/chemrxiv.7159733
Google Scholar
[57]
Q. Xu, Y. Zhao, J.Xu, J.J. Zhu, Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor, Sensors and Actuators B: Chemical. 114(2006) 379-86.
DOI: 10.1016/j.snb.2005.06.005
Google Scholar
[58]
H. Li , Q. Chen, J. Zhao, K. Urmila, Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles, Sci.Rep. 1(2015)11033.
DOI: 10.1038/srep11033
Google Scholar
[59]
A.M. Brezoiu, L.Bajenaru, D. Berger, R.A. Mitran, M. Deaconu, D. Lincu, Effect of Nanoconfinement of Polyphenolic Extract from Grape Pomace into Functionalized Mesoporous Silica on Its Biocompatibility and Radical Scavenging Activity, Antioxidants. 8(2020)9.
DOI: 10.3390/antiox9080696
Google Scholar
[60]
V. Cotea, C. Luchian, N. Bilba, N. Marius, Mesoporous silica SBA-15, a new adsorbent for bioactive polyphenols from red wine, Anal. Chim. Acta. 5(2012)180-5.
DOI: 10.1016/j.aca.2011.10.019
Google Scholar
[61]
M. Cazzola, I.Corazzari , E. Prenesti , E. Bertone , E. Vernè , S. Ferraris, Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability, Appl. Surf. Sci. 367(2016)237-48.
DOI: 10.1016/j.apsusc.2016.01.138
Google Scholar
[62]
D.S. Hsieh, H.C. Lu, C.C. Chen, C.J. Wu, M.K. Yeh, The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system, Int. J. Nanomedicine. 7(2012)1623.
DOI: 10.2147/ijn.s30060
Google Scholar
[63]
P. Zheng, B. Zhang, B. Jin, W. Guan,B. Bai, S. Dai. Synergistic enhancement in antibacterial activity of core/shell/shell SiO2/ZnO/Ag3PO4 nanoparticles. ChemNanoMat. 2018;4(9):972-81.
DOI: 10.1002/cnma.201800195
Google Scholar
[64]
L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T.d. Lima, A.C.B. Delbem, D.R. Monteiro, Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity, Antibiotics. 2(2018)46.
DOI: 10.3390/antibiotics7020046
Google Scholar
[65]
B. Das, M.I. Khan, R. Jayabalan, S.K. Behera, S.I. Yun, S.K. Tripathy , Understanding the antifungal mechanism of Ag@ ZnO core-shell nanocomposites against Candida krusei, Sci.Rep. 6(2016)36403.
DOI: 10.1038/srep36403
Google Scholar
[66]
R.C. Popescu, E. Andronescu, B.S. Vasile, Recent advances in magnetite nanoparticle functionalization for nanomedicine, Nanomaterials. 12(2019)1791.
DOI: 10.3390/nano9121791
Google Scholar
[67]
J.C. Beltran-Huarac, S.P. Singh, M.S. Tomar, S. Peña, L. Rivera, O.J. Perales-Perez , Synthesis of Fe3O4/ZnO core-shell nanoparticles for photodynamic therapy applications, MRS Online Proc Libr Arch. 1257(2010)6-4.
DOI: 10.1557/proc-1257-o06-04
Google Scholar
[68]
C. Zheng, Y. Wang, S.Z.F. Phua, W.Q. Lim, Y. Zhao Y, ZnO–DOX@ ZIF-8 core–shell nanoparticles for pH-responsive drug delivery, ACS Biomater. Sci.Eng. 10(2017) 2223-9.
DOI: 10.1021/acsbiomaterials.7b00435
Google Scholar
[69]
A. Luchini, G. Vitiello, Understanding the nano-bio interfaces: Lipid-coatings for inorganic nanoparticles as promising strategy for biomedical applications, Front. Chem.7( 2019)343.
DOI: 10.3389/fchem.2019.00343
Google Scholar
[70]
R.J. Mudakavi, A.M. Raichur, D. Chakravortty, Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections, RSC Adv. 105(2014)61160-6.
DOI: 10.1039/c4ra12973c
Google Scholar
[71]
S.C. Moorcroft, D.G. Jayne, S.D. Evans, Z.Y. Ong, Stimuli‐Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle‐Associated Drug‐Delivery Systems. Macromol. Biosci. 12(2018)1800207.
DOI: 10.1002/mabi.201800207
Google Scholar
[72]
A.R.O. Rodrigues J.O. Matos, A.M. Nova Dias, B.G. Almeida, A. Pires, A.M. Pereira, Development of multifunctional liposomes containing magnetic/plasmonic MnFe2O4/Au core/shell nanoparticles. Pharmaceutics. 2019;11(1):10.
DOI: 10.3390/pharmaceutics11010010
Google Scholar
[73]
S.J. Mattingly, M.G. O'Toole, K.T. James , G.J. Clark , M.H. Nantz, Magnetic nanoparticle-supported lipid bilayers for drug delivery, Langmuir.11( 2015)3326-32.
DOI: 10.1021/la504830z
Google Scholar
[74]
Y. Patil-Sen, E. Torino, F. De Sarno, A.M. Ponsiglione, V.N. Chhabria, W.Ahmed, Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent, Nanotechnology. (2020).
DOI: 10.1088/1361-6528/ab91f6
Google Scholar
[75]
D.Cao, X. Shu, D. Zhu, S. Liang, M. Hasan, S. Gong, Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Converg. 7(2020)1-18.
DOI: 10.1186/s40580-020-00224-9
Google Scholar