Characterizing the Properties of 70Si-30Ca Bioglass-Magnesia Composite as Hard Tissue Replacement Bio-Materials

Article Preview

Abstract:

There are many requirements for biomaterials used in the applications of bone tissue engineering, besides their biocompatibility, they should exhibit acceptable mechanical properties to mimic bone properties. Many research areas in bioactive materials for bone tissue engineering focused on producing new bioactive glass and ceramic compositions containing a trace of inorganic elements (such as Mg, Sr, Cu, Zn) to combine the mechanical properties and bioactivity. In the present study bioglass-MgO composite material has been used to produce Diopside (CaMgSi2O6) by the sintering process. The compact samples were made from a mixture powder of (7, 15)wt% MgO and binary bioglass 70Si-30Ca sintered at 1100 ᵒC for 2 hr. The XRD results confirmed the presence of diopside and wollastonite CaSiO3 in the case of using 7wt.% MgO while the structure was completely diopside at 15 Wt.% MgO. Physical properties, compressive strength, and hardness were investigated, as well as biodegradation behavior and bioactivity in human saliva were inspected. The results confirmed improving the mechanical properties along with increasing MgO as well as proved the ability to form hydroxyapatite on the surface when exposed to human saliva. These findings demonstrated the positive role of MgO in the mechanical properties of 70Si-30Ca bioactive glass besides producing diopside as a good candidate for hard tissue engineering.

You might also be interested in these eBooks

Info:

Pages:

35-44

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Karadjian, C. Essers, S. Tsitlakidis, B Reible, A. Moghaddam, A. R. Boccaccini and F. Westhause.; Review; Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence; Int. J. Mol. Sci.(2019), 20, 305.

DOI: 10.3390/ijms20020305

Google Scholar

[2] Q. Chen, C. Zhu and G. Thouas; Review: Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites; Progress in Biomaterials (2012), 1:2.

DOI: 10.1186/2194-0517-1-2

Google Scholar

[3] S. K. Nandi, A. Mahato, B. Kundu and P. Mukherjee; Doped Bioactive Glass Materials in Bone Regeneration; http://dx.doi.org/10.5772/63266; (2016).

DOI: 10.5772/63266

Google Scholar

[4] V.G. Varanasi, E. Saiz, P.M. Loomer, B. Ancheta, N. Uritani, S.P. Ho, et al.; Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O5–MgO–K2O–Na2O system) ions. Acta Biomaterialia. (2009), 5(9): 3536–47.

DOI: 10.1016/j.actbio.2009.05.035

Google Scholar

[5] C. Wu, Y. Ramaswamy, H. Zreiqat; Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering; Acta Biomater. (2010) Jun; 6(6):2237-45.

DOI: 10.1016/j.actbio.2009.12.022

Google Scholar

[6] C. Saravanan, S. Sasikumar; Bioactive Diopside (CaMgSi2O6) as a Drug Delivery Carrier – A Review; Curr Drug Deliv. (2012) Nov; 9(6):583-7.

DOI: 10.2174/156720112803529765

Google Scholar

[7] R.G. Carrodeguas, E. Córdoba, A.H. De Aza, S. De Aza, P. Pena.; Bone-Like Apatite-Forming Ability of Ca3(PO4)2-CaMg(SiO3)2 Ceramics in Simulated Body Fluid; Key Engineering Materials, (2009), Vols. 396-398, pp.103-106.

DOI: 10.4028/www.scientific.net/kem.396-398.103

Google Scholar

[8] H. Ismael, b. García-Páeza, P. Pilar, C. Baudina, M. A. Rodrígueza, C. Elcy Cordobaa, H. D. Antonio; Processing and in vitro bioactivity of a ß-Ca3(PO4)2 CaMg(SiO3)2 ceramic with the eutectic composition, Boletín de la Sociedad Española de Cerámica y Vidrio, (2016), Vol.55, Issue 1, 1-12.

DOI: 10.1016/j.bsecv.2015.10.004

Google Scholar

[9] F.R. Maia, V.M. Correlo, M.N. Neves,   R.L. Reis; Book chapter: Natural Origin Materials for Bone Tissue Engineering – Properties, Processing, and Performance, (2019),535-558.

DOI: 10.1016/b978-0-12-809880-6.00032-1

Google Scholar

[10] G.C. Wang, Z.F Lu., H. Zreiqat; Bioceramics for skeletal bone regeneration, in: K. Mallick (Ed.), Bone Substitute Biomaterials, Woodhead Publishing, (2014), 180-216.

DOI: 10.1533/9780857099037.2.180

Google Scholar

[11] S.Cavalu, F.Banica, C.Gruian, E.Vanea, G.Goller, V.Simon; Microscopic and spectroscopic investigation of bioactive glasses for antibiotic controlled release, Journal of Molecular Structure (2013) 47-52.

DOI: 10.1016/j.molstruc.2013.02.016

Google Scholar

[12] Y. J. No, J. J. Li and H. Zreiqat; Review: Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes, Materials, (2017), 10, 153.

DOI: 10.3390/ma10020153

Google Scholar

[13] S. K. Arepalli1, H. Tripathi, P. P. Manna, P. Pankaj, S. Krishnamurthy, S. C.U. Patne, R. Pyare, S. P. Singh, Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses, Journal of the Australian Ceramic Society,55, (2019), 145–1552.

DOI: 10.1007/s41779-018-0220-5

Google Scholar

[14] M. A. Sainz, P. Pena, S. Serena, A Caballero; Influence of design on bioactivity of novel CaSiO3–CaMg (SiO3) 2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomaterialia, (2010), 6(7), 2797-2807.

DOI: 10.1016/j.actbio.2010.01.003

Google Scholar

[15] A.A. Batool, I. K. Sabree, S. J. Edrees, effects of MgO wt.% on the structure, mechanical, and biological properties of bioactive glass-ceramics in the SiO2,Na2O,CaO,P2O5,MgO system, International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 01, January (2019), 97–106.

DOI: 10.1016/s0272-8842(99)00072-3

Google Scholar

[16] M. Mozafari, M. Rabiee, M. Azami, and S. Maleknia, Biomimetic formation of apatite on the surface of porous gelatine/bioactive glass nanocomposite scaffolds, Applied surface science, (2010), 257, 1740-1749.

DOI: 10.1016/j.apsusc.2010.09.008

Google Scholar

[17] M.A. Sainz, P. Pena, S. Serena, A. Caballero; Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation, Acta Biomaterialia, (2010),2, 797–2807.

DOI: 10.1016/j.actbio.2010.01.003

Google Scholar

[18] N. Toru and T. Sadami, Study of diopside ceramics for biomaterials, Journal of Materials Science: Materials in Medicine, (1999), volume 10, 475–479.

Google Scholar

[19] C. Wu, J. Chang, Degradation, Bioactivity, and Cytocompatibility of Diopside, Akermanite, and Bredigite Ceramics, Biomaterials and Tissue Engineering Research Center, (2006).

DOI: 10.1002/jbm.b.30779

Google Scholar

[20] A. S. Kumar , T. Himanshu , M. P. Partha, P. Paliwal , K. Sairam , P. Shashikant , P. Ram , S. P. Singh, Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses. Journal of the Australian Ceramic Society, (2018).

Google Scholar

[21] P. D. Aza, Z. Luklinska, M. Anseau, Bioactivity of diopside ceramic in human parotid saliva, J Biomed Mater Res part B Appl Biomater, Apr (2005);73(1):54-60.

DOI: 10.1002/jbm.b.30187

Google Scholar