A Short Description of most Common Biocompatible Materials that are Suitable for 3D Printing in Medical Field

soon available
Article Preview

Abstract:

Over the past 30 years, the medical sector has increasingly used 3D printing to offer personalized and fast solutions for patients. The lack of biocompatible and biomechanically efficient polymers, hydrogels, biomaterials and bioinks is a major barrier to the widespread adoption of 3D printing in biomedical manufacturing. For this aim, a variety of synthetic and biological polymers can be employed. Combining biological and synthetic materials can enhance their physicochemical and biological qualities, as each has advantages and downsides. This paper discusses the types of synthetic, natural and hybrid materials that can be used for medical purpose 3D printing.

Info:

Pages:

105-126

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chamo D, Msallem B, Sharma N, Aghlmandi S, Kunz C, Thieringer FM. Accuracy assessment of molded, patient-specific polymethylmethacrylate craniofacial implants compared to their 3D printed originals. J Clin Med (2020)

DOI: 10.3390/jcm9030832

Google Scholar

[2] Yang Y, Li H, Xu Y, Dong Y, Shan W, Shen J. Fabrication and evaluation of dental fillers using customized molds via 3D printing technology. Int J Pharm (2019)

DOI: 10.1016/j.ijpharm.2019.03.024

Google Scholar

[3] Said S, Boulkaibet I, Sheikh M, Karar AS, Alkork S, Nait-Ali A. Machine-learningbased muscle control of a 3D-printed bionic arm. Sensors (Basel) (2020)

DOI: 10.3390/s20113144

Google Scholar

[4] Vujaklija I, Farina D. 3D printed upper limb prosthetics. Expert Rev Med Devices, (2018)

DOI: 10.1080/17434440.2018.1494568

Google Scholar

[5] Belhouideg S. Impact of 3D printed medical equipment on the management of the Covid19 pandemic. Int J Health Plann Manage (2020)

Google Scholar

[6] Sun Z. Clinical applications of patient-specific 3D printed models in cardiovascular disease: current status and future directions. Biomolecules (2020)

DOI: 10.3390/biom10111577

Google Scholar

[7] Martin-Noguerol T, Paulano-Godino F, Riascos RF, Calabia-Del-Campo J, Marquez- Rivas J, Luna A. Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning. Ann Transl Med (2019)

DOI: 10.21037/atm.2019.10.109

Google Scholar

[8] Laird NZ, Acri T, Chakka JL, Quarterman J, Malkawi WI, Elangovan S, Salem AK. Applications of nanotechnology in 3D printed tissue engineering scaffolds. Eur J Pharm Biopharm (2021)

DOI: 10.1016/b978-0-12-821506-7.00028-4

Google Scholar

[9] Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci (2021)

DOI: 10.3390/ijms22020830

Google Scholar

[10] Choi YJ, Park H, Ha DH, Yun HS, Yi HG, Lee H. 3D bioprinting of In Vitro models using hydrogel-based bioinks. Polymers (Basel) (2021)

DOI: 10.3390/polym13030366

Google Scholar

[11] Chu T, Wang H, Qiu Y, Luo H, He B, Wu B, Gao B. 3D printed smart silk wearable sensors. Analyst (2021)

DOI: 10.1039/d0an02292f

Google Scholar

[12] Han T, Kundu S, Nag A, Xu Y. 3D printed sensors for biomedical applications: a review. Sensors (Basel) (2019)

DOI: 10.3390/s19071706

Google Scholar

[13] Sharafeldin M, Jones A, Rusling JF. 3D-Printed Biosensor Arrays for Medical Diagnostics. Micromachines (Basel) (2018)

DOI: 10.3390/mi9080394

Google Scholar

[14] G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3, 278 (2018)

DOI: 10.1016/j.bioactmat.2017.10.001

Google Scholar

[15] P.M. Mountziaris, A.G. Mikos, Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng. Part B Rev. 14, 179 (2008)

DOI: 10.1089/ten.teb.2008.0038

Google Scholar

[16] Albuquerque P, Coelho LC, Teixeira JA, Carneiro-da-Cunha MG. Approaches in biotechnological applications of natural polymers. AIMS Molecular Science. (2016)

DOI: 10.3934/molsci.2016.3.386

Google Scholar

[17] Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial cells, nanomedicine, and biotechnology. (2018)

DOI: 10.1080/21691401.2017.1349778

Google Scholar

[18] Rahmati M, Pennisi CP, Budd E, Mobasheri A, Mozafari M. Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. (2018)

DOI: 10.1007/5584_2018_278

Google Scholar

[19] Mano J, Silva G, Azevedo HS, Malafaya P, Sousa R, Silva SS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface. (2007)

DOI: 10.1098/rsif.2007.0220

Google Scholar

[20] C. Patra, S. Talukdar, T. Novoyatleva, S.R. Velagala, C. Mühlfeld, B. Kundu, S.C. Kundu, F.B. Engel, Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33, 2673 (2012)

DOI: 10.1016/j.biomaterials.2011.12.036

Google Scholar

[21] I. Dal Pra, G. Freddi, J. Minic, A. Chiarini, U. Armato, De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 26, 1987 (2005)

DOI: 10.1016/j.biomaterials.2004.06.036

Google Scholar

[22] A. Teimouri, M. Azadi, R. Emadi, J. Lari, A.N. Chermahini, Preparation, characterization, degradation and biocompatibility of different silk fibroin based composite scaffolds prepared by freeze-drying method for tissue engineering application. Polym. Degrad. Stab. 121, 18 (2015)

DOI: 10.1016/j.polymdegradstab.2015.08.004

Google Scholar

[23] H. Liu, X. Li, G. Zhou, H. Fan, Y. Fan, Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials 32, 3784 (2011)

DOI: 10.1016/j.biomaterials.2011.02.002

Google Scholar

[24] L. Wei, S. Wu, M. Kuss, X. Jiang, R. Sun, . Reid, X. Qin, B. Duan, 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioact. Mater. 4, 256 (2019)

DOI: 10.1016/j.bioactmat.2019.09.001

Google Scholar

[25] C.M. Srivastava, R. Purwar, A.P. Gupta, Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering. Int. J. Biol. Macromol. 130, 437 (2019)

DOI: 10.1016/j.ijbiomac.2018.12.255

Google Scholar

[26] M. Xie, Y. Xu, L. Song, J. Wang, X. Lv, Y. Zhang, Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model. J. Surg. Res. 188, 1 (2014)

DOI: 10.1016/j.jss.2013.11.1102

Google Scholar

[27] S. Suzuki, A.M. Shadforth, S. McLenachan, D. Zhang, S.-C. Chen, J. Walshe, G.E. Lidgerwood, A. Pébay, T.V. Chirila, F.K. Chen, Optimization of silk fibroin membranes for retinal implantation. Mater. Sci. Eng. C 105, 110131 (2019)

DOI: 10.1016/j.msec.2019.110131

Google Scholar

[28] B. Marelli, A. Alessandrino, S. Farè, G. Freddi, D. Mantovani, M.C. Tanzi, Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 6, 4019 (2010)

DOI: 10.1016/j.actbio.2010.05.008

Google Scholar

[29] B. Singh, K. Pramanik, Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue engineering. Tissue Cell 55, 83 (2018)

DOI: 10.1016/j.tice.2018.10.003

Google Scholar

[30] M. Garcia-Fuentes, A.J. Meinel, M. Hilbe, L. Meinel, H.P. Merkle, Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue

DOI: 10.1016/j.biomaterials.2009.06.008

Google Scholar

[31] https://thechemistryspace.quora.com/Trouble-with-Creating-Schweitzers-Reagent

Google Scholar

[32] N.M. Ergul, S. Unal, I. Kartal, C. Kalkandelen, N. Ekren, O. Kilic, L. Chi-Chang, O. Gunduz, 3D printing of chitosan/poly (vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering. Polym. Test. 79, 106006 (2019)

DOI: 10.1016/j.polymertesting.2019.106006

Google Scholar

[33] T. Kutlusoy, B. Oktay, N.K. Apohan, M. Süleymanoğlu, S.E. Kuruca, Chitosan-co-hyaluronic acid porous cryogels and their application in tissue engineering. Int. J. Biol. Macromol. 103, 366 (2017)

DOI: 10.1016/j.ijbiomac.2017.05.067

Google Scholar

[34] https://en.wikipedia.org/wiki/Chitosan

Google Scholar

[35] J. Zhang, D. Wang, X. Jiang, L. He, L. Fu, Y. Zhao, Y. Wang, H. Mo, J. Shen, Multistructured vascular patches constructed via layer-by-layer selfassembly of heparin and chitosan for vascular tissue engineering applications. Chem. Eng. J. 370, 1057 (2019)

DOI: 10.1016/j.cej.2019.03.270

Google Scholar

[36] Guzzi EA, Tibbitt MW. Additive manufacturing of precision biomaterials. Adv Mater 020;32(13):e1901994

Google Scholar

[37] Galeja M, Hejna A, Kosmela P, Kulawik A. Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle. Materials (Basel) (2020)

DOI: 10.3390/ma13020297

Google Scholar

[38] Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci (2015)

DOI: 10.3390/ijms160715118

Google Scholar

[39] New approach for predictive measurement of knee cartilage defectswith three-dimensional printing based on CT-arthrography: A feasibility study - R. Michalik , S. Schrading, T. Dirrichs, A. Prescher, C.K. Kuhl, M. Tingart, B. Rath (2016)

DOI: 10.1016/j.jor.2016.10.013

Google Scholar

[40] C.-W. Lou, C.-H. Yao, Y.-S. Chen, T.-C. Hsieh, J.-H. Lin, W.-H. Hsing, Manufacturing and properties of PLA absorbable surgical suture. Text. Res. J. 78, 958 (2008)

DOI: 10.1177/0040517507087856

Google Scholar

[41] A. Heino, A. Naukkarinen, T. Kulju, P. Törmälä, T. Pohjonen, E. Mäkelä, Characteristics of poly (l–) lactic acid suture applied to fascial closure in rats. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. 30, 187 (1996)

DOI: 10.1002/(sici)1097-4636(199602)30:2<187::aid-jbm8>3.0.co;2-n

Google Scholar

[42] H. Xia, X. Gao, G. Gu, Z. Liu, Q. Hu, Y. Tu, Q. Song, L. Yao, Z. Pang, X. Jiang, Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. Int. J. Pharm. 436, 840 (2012)

DOI: 10.1016/j.ijpharm.2012.07.029

Google Scholar

[43] D. Howard, K. Partridge, X. Yang, N.M. Clarke, Y. Okubo, K. Bessho, S.M. Howdle, K.M. Shakesheff, R.O. Oreffo, Immunoselection and adenoviral genetic modulation of human osteoprogenitors: in vivo bone formation on PLA scaffold. Biochem. Biophys. Res. Commun. 299, 208 (2002)

DOI: 10.1016/s0006-291x(02)02561-5

Google Scholar

[44] S. Shao, S. Zhou, L. Li, J. Li, C. Luo, J. Wang, X. Li, J. Weng, Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 32, 2821 (2011)

DOI: 10.1016/j.biomaterials.2011.01.051

Google Scholar

[45] L.K. Narayanan, P. Huebner, M.B. Fisher, J.T. Spang, B. Starly, R.A. Shirwaiker, 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater. Sci. Eng. 2, 1732 (2016)

DOI: 10.1021/acsbiomaterials.6b00196

Google Scholar

[46] F. Diomede, A. Gugliandolo, P. Cardelli, I. Merciaro, V. Ettorre, T. Traini, R. Bedini, D. Scionti, A. Bramanti, A. Nanci, Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res. Ther. 9, 104 (2018)

DOI: 10.1186/s13287-018-0850-0

Google Scholar

[47] A. Gugliandolo, F. Diomede, P. Cardelli, A. Bramanti, D. Scionti, P. Bramanti, O. Trubiani, E. Mazzon, Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3 d bioprinted scaffold: a promising strategy for neuroregeneration. J. Biomed. Mater. Res. A 106, 126 (2018)

DOI: 10.1002/jbm.a.36213

Google Scholar

[48] da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J (2018)

DOI: 10.1016/j.cej.2018.01.010

Google Scholar

[49] Schiller C, Epple M. Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters. Biomaterials (2003)

DOI: 10.1016/s0142-9612(02)00634-8

Google Scholar

[50] Efficacy of eluted antibiotics through 3D printed femoral implants - Mohammed Mehdi Benmassaoud, Christopher Kohama, Tae Won B. Kim, Shivakumar Ranganathan (2019)

DOI: 10.1007/s10544-019-0395-8

Google Scholar

[51] Woodruff MA. DietmarWernerHutmacher, The return of a forgotten polymer - Polycaprolactone in the 21st century. Prog Polym Sci (2010)

Google Scholar

[52] Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater (2010)

DOI: 10.1016/j.actbio.2010.02.002

Google Scholar

[53] Dziadek M, Pawlik J, Menaszek E, Stodolak-Zych E, Cholewa-Kowalska K. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. J Biomed Mater Res B Appl Biomater (2015)

DOI: 10.1002/jbm.b.33350

Google Scholar

[54] Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation by Obinna Okolie, Anuj Kumar, Christine Edwards, Linda A. Lawton , Adekunle Oke, Seonaidh McDonald, Vijay Kumar Thakur and James Njuguna (2023)

DOI: 10.3390/jcs7060213

Google Scholar

[55] Alabood AS, Sivasankaran S. Experimental design and investigation on the mechanical behavior of novel T 3D printed biocompatibility polycarbonate scaffolds for medical applications. J Manuf Process (2018)

DOI: 10.1016/j.jmapro.2018.08.035

Google Scholar

[56] Materials and structures used in meniscus repair and regeneration: A review - Ketankumar V. Vadodaria, Abhilash Kulkarni, Elango Santhini, Prakash Vasudevan (2019)

DOI: 10.1051/bmdcn/2019090102

Google Scholar

[57] Deng X, Zeng Z, Peng B, Yan S, Ke W. Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials (Basel) (2018)

DOI: 10.3390/ma11020216

Google Scholar

[58] Kurtz SM. Chemical and radiation stability of PEEK. Peek Biomaterials Handbook (2012)

DOI: 10.1016/b978-1-4377-4463-7.10006-5

Google Scholar

[59] Gu X, Sun X, Sun Y, Wang J, Liu Y, Yu K, Wang Y, Zhou Y. Bioinspired modifications of PEEK implants for bone tissue engineering. Front Bioeng Biotechnol (2020)

DOI: 10.3389/fbioe.2020.631616

Google Scholar

[60] Qin L, Yao S, Zhao J, Zhou C, Oates TW, Weir MD, Wu J, Xu HHK. Review on development and dental applications of Polyetheretherketone-based biomaterials and restorations. Materials (Basel) (2021)

DOI: 10.3390/ma14020408

Google Scholar

[61] Ding R, Chen T, Xu Q, Wei R, Feng B, Weng J, Duan K, Wang J, Zhang K, Zhang X. Mixed modification of the surface microstructure and chemical state of polyetheretherketone to improve its antimicrobial activity, hydrophilicity, cell adhesion, and bone integration. ACS Biomater Sci Eng (2020)

DOI: 10.1021/acsbiomaterials.9b01148

Google Scholar

[62] Anabtawi M, Thomas M, Lee NJ. The Use of Interlocking Polyetheretherketone (PEEK) patient-specific facial implants in the treatment of facial deformities. A retrospective review of ten patients. J Oral Maxillofac Surg 2020.

DOI: 10.1016/j.joms.2020.12.009

Google Scholar

[63] Statnik ES, Dragu C, Besnard C, Lunt AJG, Salimon AI, Maksimkin A, Korsunsky AM. Multi-scale digital image correlation analysis of in situ deformation of open-cell porous ultra-high molecular weight polyethylene foam. Polymers (Basel) (2020)

DOI: 10.3390/polym12112607

Google Scholar

[64] Ma R, Li Y, Wang J, Yang P, Wang K, Wang W. Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions. J Mater Sci Mater Med (2020)

DOI: 10.1007/s10856-020-06435-0

Google Scholar

[65] Sharma N, Aghlmandi S, Cao S, Kunz C, Honigmann P, Thieringer FM. Quality Characteristics and clinical relevance of in-house 3D-printed customized Polyetheretherketone (PEEK) implants for craniofacial reconstruction. J Clin Med (2020)

DOI: 10.3390/jcm9092818

Google Scholar

[66] Dodier P, Winter F, Auzinger T, Mistelbauer G, Frischer JM, Wang WT, Mallouhi A, Marik W, Wolfsberger S, Reissig L, Hammadi F, Matula C, Baumann A, Bavinzski G. Single-stage bone resection and cranioplastic reconstruction: comparison of a novel software-derived PEEK workflow with the standard reconstructive method. Int J Oral Maxillofac Surg (2020)

DOI: 10.1016/j.ijom.2019.11.011

Google Scholar

[67] Considerations in computer-aided design for inlay cranioplasty: technical note - Erik Noutn, Maurice Y Mommaerts (2018)

Google Scholar

[68] Wang L, Sanders JE, Gardner DJ, Han Y. Effect of fused deposition modeling process parameters on the mechanical properties of a filled polypropylene. Progr Additive Manuf (2018)

DOI: 10.1007/s40964-018-0053-3

Google Scholar

[69] Lin H, Shi L, Wang D. A rapid and intelligent designing technique for patient-specific and 3D-printed orthopedic cast. 3D Print Med (2015)

DOI: 10.1186/s41205-016-0007-7

Google Scholar

[70] S. Lu, W. Hu, Z. Zhang, T. Zhang. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model (2018)

DOI: 10.1007/s10029-018-1782-4

Google Scholar

[71] Li J, Li Y, Ma S, Gao Y, Zuo Y, Hu J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J Biomed Mater Res A (2010)

DOI: 10.1002/jbm.a.32926

Google Scholar

[72] Rajesh Rangarajan, Collin K. Blout, Vikas V. Patel, John Itamura Early results of reverse total shoulder arthroplasty using a patient-matched glenoid implant for severe glenoid bone deficiency (2020)

DOI: 10.1016/j.jse.2020.04.024

Google Scholar

[73] Feng F, Ye L. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci (2010)

DOI: 10.1002/app.32863

Google Scholar

[74] Van Alsenoy K, Ryu JH, Girard O. The effect of EVA and TPU custom foot orthoses on running economy, running mechanics, and comfort. Front Sports Act Living (2019)

DOI: 10.3389/fspor.2019.00034

Google Scholar

[75] Oisin Haddow, Essyrose Mathew, Dimitrios A Lamprou. Fused deposition modelling 3D printing proof-of-concept study for personalised inner ear therapy (2021)

DOI: 10.1093/jpp/rgab147

Google Scholar

[76] C. Laurencin, M. Deng, Natural and Synthetic Biomedical Polymers (Newnes, 2014)

Google Scholar

[77] Neal Hande, Jaime Gutierrez Long-term safety and efficacy of polyurethane foam-covered breast implants

Google Scholar

[78] Ankit Chaudhary, Virendra Deo Sinha, Sanjeev Chopra, Gaurav Jain. Low-Cost Customized Cranioplasty with Polymethyl Methacrylate Using 3D Printer Generated Mold: An Institutional Experience and Review of Literature (2020)

DOI: 10.1055/s-0040-1713459

Google Scholar

[79] Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater (2014)

DOI: 10.1002/adma.201303233

Google Scholar

[80] Guan X, Avci-Adali M, Alarcin E, Cheng H, Kashaf SS, Li Y, Chawla A, Jang HL, Khademhosseini A. Development of hydrogels for regenerative engineering. Biotechnol J (2017)

DOI: 10.1002/biot.201600394

Google Scholar

[81] Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) (2010)

DOI: 10.2217/nnm.10.12

Google Scholar

[82] Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel) (2019)

DOI: 10.3390/ma12203323

Google Scholar

[83] Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol (2013)

DOI: 10.1016/j.tibtech.2013.03.002

Google Scholar

[84] Aswathy S H, Narendrakumar Uttamchand, Manjubala Inderchand. Commercial hydrogels for biomedical applications (2020)

DOI: 10.1016/j.heliyon.2020.e03719

Google Scholar

[85] Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC, Jungst T, Malda J, Mironov VA, Nakayama K, Ovsianikov A, Sun W, Takeuchi S, Yoo JJ, Woodfield TBF. A definition of bioinks and their distinction from biomaterial inks. Biofabrication (2018)

DOI: 10.1088/1758-5090/aaec52

Google Scholar

[86] Stanton MM, Samitier J, S_anchez S. Bioprinting of 3D hydrogels. Lab Chip (2015)

Google Scholar

[87] Mu X, Fitzpatrick V, Kaplan DL. From silk spinning to 3D printing: polymer manufacturing using directed hierarchical molecular assembly. Adv Healthc Mater (2020)

DOI: 10.1002/adhm.201901552

Google Scholar

[88] Lim W, Kim GJ, Kim HW, Lee J, Zhang X, Kang MG, Seo JW, Cha JM, Park HJ, Lee MY, Shin SR, Shin SY, Bae H. Kappa-carrageenan-based dual Crosslinkable Bioink for extrusion type Bioprinting. Polymers (Basel) (2020)

DOI: 10.3390/polym12102377

Google Scholar

[89] Y. Zhu , et al. , 3D printed zirconia ceramic hip joint with precise structure and broad- -spectrum antibacterial properties, Int. J. Nanomed. 14 (2019)

Google Scholar

[90] G. Daculsi , History of development and use of the bioceramics and biocomposites, in: I.V. Antoniac (Ed.), Handbook of Bioceramics and Biocomposites, Springer International Publishing, Cham, (2016)

DOI: 10.1007/978-3-319-09230-0_2-2

Google Scholar

[91] F. Baino , S. Hamzehlou , S. Kargozar , Bioactive glasses: where are we and where are we going? J. Funct. Biomater. 9 (1) (2018)

DOI: 10.3390/jfb9010025

Google Scholar

[92] J. Chevalier et al. On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications Biomaterials (2009)

DOI: 10.1016/j.biomaterials.2009.06.022

Google Scholar

[93] Alumina and Zirconia Ceramics in Joint Replacements - Corrado Piconi, G. Maccauro, Francesco Muratori, E. Brach Del Prever

Google Scholar

[94] S. Bose , S. Tarafder , A. Bandyopadhyay , 7 - Hydroxyapatite coatings for metallic implants, in: M. Mucalo (Ed.), Hydroxyapatite (Hap) for Biomedical Applications, Woodhead Publishing, (2015)

DOI: 10.1016/b978-1-78242-033-0.00007-9

Google Scholar

[95] Use of bovine pericardium as a wrapping material for hydroxyapatite orbital implants - Mrgha Gupta, Pankaj Puri, Ian Rennie (2002)

DOI: 10.1136/bjo.86.3.288

Google Scholar

[96] Hussein, M.A., A.S. Mohammed, and N. Al-Aqeeli, Wear characteristics of metallic biomaterials: a review. Materials (Basel), (2015)

DOI: 10.3390/ma8052749

Google Scholar

[97] Schinhammer, M., et al., Biodegradable Fe-based alloys for medical applications: design strategy and degradation characteristics. Eur. Cells Mater., (2010)

Google Scholar

[98] Bernd Wegener, Maik Behnke, Stefan Milz, Volkmar Jansson, Christian Redlich, Walter Hermanns, Christof Birkenmaier, Korbinian Pieper, Thomas Weißgärber & Peter Quadbeck. Local and systemic inflammation after implantation of a novel iron based porous degradable bone replacement material in sheep model (2021)

DOI: 10.1038/s41598-021-91296-y

Google Scholar

[99] Francis, A., et al., Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci.: Mater. Med., (2015)

Google Scholar

[100] Yang, K., & Ren, Y.. Nickel-free austenitic stainless steels for medi- cal applications. Sci. Technol. Adv. Mater; (2010)

Google Scholar

[101] Milne, Stuart. "3D printing with stainless steel. "AZoM.com , Azo Materials, 26 July (2019)

Google Scholar

[102] Niinomi, Mitsuo, et al. Development of new metallic alloys for biomedical applica- tions, Science Direct, Nov. (2012)

Google Scholar

[103] Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges by R. K. Singh Raman and Shervin Eslami Harandi (2017)

DOI: 10.3390/ma10111316

Google Scholar

[104] Chakraborty Banerjee, P., et al., Magnesium implants: prospects and challenges. Materials (Basel), (2019)

Google Scholar

[105] Karunakaran, R., et al., Additive manufacturing of magnesium alloys. Bioactive mater., (2020)

Google Scholar

[106] Kamrani, S. and C. Fleck, Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals, (2019)

DOI: 10.1007/s10534-019-00170-y

Google Scholar

[107] Peixuan Zhi, Leixin Liu, Jinke Chang, Chaozong Liu, Qiliang Zhang, Jian Zhou , Ziyu Liu and Yubo Fan. Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material by (2022)

DOI: 10.3390/met12091500

Google Scholar

[108] Kabir, H., et al., Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives. Bioactive mater., (2020)

DOI: 10.1016/j.bioactmat.2020.09.013

Google Scholar

[109] Alon Kafri, Shira Ovadia, Galit Yosafovich-Doitch & Eli Aghion In vivo performances of pure Zn and Zn–Fe alloy as biodegradable implants (2018)

DOI: 10.1007/s10856-018-6096-7

Google Scholar

[110] Jakubowicz, J., Special issue:Ti-based biomaterials: synthesis, properties and applications. Materials (Basel, Switzerland), (2020)

Google Scholar

[111] Fowler, L., et al., Development of antibacterial Ti-Cu(x) alloys for dental applications: effects of ageing for alloys with up to 10 wt% Cu. Materials (Basel, Switzer- land), (2019)

DOI: 10.3390/ma12234017

Google Scholar

[112] Lee, P.-.Y., et al., Comparison of mechanical stability of elastic Titanium, Nickel- Titanium, and stainless steel nails used in the fixation of diaphyseal long bone frac- tures. Materials (Basel, Switzerland), (2018)

DOI: 10.3390/ma11112159

Google Scholar

[113] Berasi, C.C.t., et al., Are custom triflange acetabular components effective for re- construction of catastrophic bone loss? Clin. Orthop. Relat. Res., (2015)

Google Scholar

[114] http://finestshapes.com/cancer-patient-gets-worlds-first-3d-printed-ribcage-and-sternum-implant

Google Scholar

[115] Institute, Cobalt. "History of cobalt. "CobaltInstitute , Cobalt Institute, 11 Dec. (2020)

Google Scholar

[116] Tanzi, Maria Cristina, et al. "Biomaterials and Applications. "Foundations of Biomater. Eng., Academic Press, 22 Mar. (2019)

Google Scholar

[117] https://www.metal-am.com/desktop-health-launches-dental-binder-jetting-with-cobalt-chrome

Google Scholar

[118] Cobalt-Chrome 3D Printing. (n.d.). Retrieved April 18, 2021.

Google Scholar