p.27
p.51
p.63
p.75
p.81
p.93
p.105
p.127
p.137
A Short Description of most Common Biocompatible Materials that are Suitable for 3D Printing in Medical Field
Abstract:
Over the past 30 years, the medical sector has increasingly used 3D printing to offer personalized and fast solutions for patients. The lack of biocompatible and biomechanically efficient polymers, hydrogels, biomaterials and bioinks is a major barrier to the widespread adoption of 3D printing in biomedical manufacturing. For this aim, a variety of synthetic and biological polymers can be employed. Combining biological and synthetic materials can enhance their physicochemical and biological qualities, as each has advantages and downsides. This paper discusses the types of synthetic, natural and hybrid materials that can be used for medical purpose 3D printing.
Info:
Periodical:
Pages:
105-126
Citation:
Online since:
October 2025
Authors:
Keywords:
Price:
Сopyright:
© 2025 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] Chamo D, Msallem B, Sharma N, Aghlmandi S, Kunz C, Thieringer FM. Accuracy assessment of molded, patient-specific polymethylmethacrylate craniofacial implants compared to their 3D printed originals. J Clin Med (2020)
DOI: 10.3390/jcm9030832
[2] Yang Y, Li H, Xu Y, Dong Y, Shan W, Shen J. Fabrication and evaluation of dental fillers using customized molds via 3D printing technology. Int J Pharm (2019)
[3] Said S, Boulkaibet I, Sheikh M, Karar AS, Alkork S, Nait-Ali A. Machine-learningbased muscle control of a 3D-printed bionic arm. Sensors (Basel) (2020)
DOI: 10.3390/s20113144
[4] Vujaklija I, Farina D. 3D printed upper limb prosthetics. Expert Rev Med Devices, (2018)
[5] Belhouideg S. Impact of 3D printed medical equipment on the management of the Covid19 pandemic. Int J Health Plann Manage (2020)
[6] Sun Z. Clinical applications of patient-specific 3D printed models in cardiovascular disease: current status and future directions. Biomolecules (2020)
DOI: 10.3390/biom10111577
[7] Martin-Noguerol T, Paulano-Godino F, Riascos RF, Calabia-Del-Campo J, Marquez- Rivas J, Luna A. Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning. Ann Transl Med (2019)
[8] Laird NZ, Acri T, Chakka JL, Quarterman J, Malkawi WI, Elangovan S, Salem AK. Applications of nanotechnology in 3D printed tissue engineering scaffolds. Eur J Pharm Biopharm (2021)
[9] Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci (2021)
DOI: 10.3390/ijms22020830
[10] Choi YJ, Park H, Ha DH, Yun HS, Yi HG, Lee H. 3D bioprinting of In Vitro models using hydrogel-based bioinks. Polymers (Basel) (2021)
[11] Chu T, Wang H, Qiu Y, Luo H, He B, Wu B, Gao B. 3D printed smart silk wearable sensors. Analyst (2021)
DOI: 10.1039/d0an02292f
[12] Han T, Kundu S, Nag A, Xu Y. 3D printed sensors for biomedical applications: a review. Sensors (Basel) (2019)
DOI: 10.3390/s19071706
[13] Sharafeldin M, Jones A, Rusling JF. 3D-Printed Biosensor Arrays for Medical Diagnostics. Micromachines (Basel) (2018)
DOI: 10.3390/mi9080394
[14] G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3, 278 (2018)
[15] P.M. Mountziaris, A.G. Mikos, Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng. Part B Rev. 14, 179 (2008)
[16] Albuquerque P, Coelho LC, Teixeira JA, Carneiro-da-Cunha MG. Approaches in biotechnological applications of natural polymers. AIMS Molecular Science. (2016)
[17] Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial cells, nanomedicine, and biotechnology. (2018)
[18] Rahmati M, Pennisi CP, Budd E, Mobasheri A, Mozafari M. Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. (2018)
[19] Mano J, Silva G, Azevedo HS, Malafaya P, Sousa R, Silva SS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface. (2007)
[20] C. Patra, S. Talukdar, T. Novoyatleva, S.R. Velagala, C. Mühlfeld, B. Kundu, S.C. Kundu, F.B. Engel, Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33, 2673 (2012)
[21] I. Dal Pra, G. Freddi, J. Minic, A. Chiarini, U. Armato, De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 26, 1987 (2005)
[22] A. Teimouri, M. Azadi, R. Emadi, J. Lari, A.N. Chermahini, Preparation, characterization, degradation and biocompatibility of different silk fibroin based composite scaffolds prepared by freeze-drying method for tissue engineering application. Polym. Degrad. Stab. 121, 18 (2015)
[23] H. Liu, X. Li, G. Zhou, H. Fan, Y. Fan, Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials 32, 3784 (2011)
[24] L. Wei, S. Wu, M. Kuss, X. Jiang, R. Sun, . Reid, X. Qin, B. Duan, 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioact. Mater. 4, 256 (2019)
[25] C.M. Srivastava, R. Purwar, A.P. Gupta, Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering. Int. J. Biol. Macromol. 130, 437 (2019)
[26] M. Xie, Y. Xu, L. Song, J. Wang, X. Lv, Y. Zhang, Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model. J. Surg. Res. 188, 1 (2014)
[27] S. Suzuki, A.M. Shadforth, S. McLenachan, D. Zhang, S.-C. Chen, J. Walshe, G.E. Lidgerwood, A. Pébay, T.V. Chirila, F.K. Chen, Optimization of silk fibroin membranes for retinal implantation. Mater. Sci. Eng. C 105, 110131 (2019)
[28] B. Marelli, A. Alessandrino, S. Farè, G. Freddi, D. Mantovani, M.C. Tanzi, Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 6, 4019 (2010)
[29] B. Singh, K. Pramanik, Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue engineering. Tissue Cell 55, 83 (2018)
[30] M. Garcia-Fuentes, A.J. Meinel, M. Hilbe, L. Meinel, H.P. Merkle, Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue
[31] https://thechemistryspace.quora.com/Trouble-with-Creating-Schweitzers-Reagent
[32] N.M. Ergul, S. Unal, I. Kartal, C. Kalkandelen, N. Ekren, O. Kilic, L. Chi-Chang, O. Gunduz, 3D printing of chitosan/poly (vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering. Polym. Test. 79, 106006 (2019)
[33] T. Kutlusoy, B. Oktay, N.K. Apohan, M. Süleymanoğlu, S.E. Kuruca, Chitosan-co-hyaluronic acid porous cryogels and their application in tissue engineering. Int. J. Biol. Macromol. 103, 366 (2017)
[34] https://en.wikipedia.org/wiki/Chitosan
[35] J. Zhang, D. Wang, X. Jiang, L. He, L. Fu, Y. Zhao, Y. Wang, H. Mo, J. Shen, Multistructured vascular patches constructed via layer-by-layer selfassembly of heparin and chitosan for vascular tissue engineering applications. Chem. Eng. J. 370, 1057 (2019)
[36] Guzzi EA, Tibbitt MW. Additive manufacturing of precision biomaterials. Adv Mater 020;32(13):e1901994
[37] Galeja M, Hejna A, Kosmela P, Kulawik A. Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle. Materials (Basel) (2020)
DOI: 10.3390/ma13020297
[38] Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci (2015)
[39] New approach for predictive measurement of knee cartilage defectswith three-dimensional printing based on CT-arthrography: A feasibility study - R. Michalik , S. Schrading, T. Dirrichs, A. Prescher, C.K. Kuhl, M. Tingart, B. Rath (2016)
[40] C.-W. Lou, C.-H. Yao, Y.-S. Chen, T.-C. Hsieh, J.-H. Lin, W.-H. Hsing, Manufacturing and properties of PLA absorbable surgical suture. Text. Res. J. 78, 958 (2008)
[41] A. Heino, A. Naukkarinen, T. Kulju, P. Törmälä, T. Pohjonen, E. Mäkelä, Characteristics of poly (l–) lactic acid suture applied to fascial closure in rats. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. 30, 187 (1996)
DOI: 10.1002/(sici)1097-4636(199602)30:2<187::aid-jbm8>3.0.co;2-n
[42] H. Xia, X. Gao, G. Gu, Z. Liu, Q. Hu, Y. Tu, Q. Song, L. Yao, Z. Pang, X. Jiang, Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. Int. J. Pharm. 436, 840 (2012)
[43] D. Howard, K. Partridge, X. Yang, N.M. Clarke, Y. Okubo, K. Bessho, S.M. Howdle, K.M. Shakesheff, R.O. Oreffo, Immunoselection and adenoviral genetic modulation of human osteoprogenitors: in vivo bone formation on PLA scaffold. Biochem. Biophys. Res. Commun. 299, 208 (2002)
[44] S. Shao, S. Zhou, L. Li, J. Li, C. Luo, J. Wang, X. Li, J. Weng, Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 32, 2821 (2011)
[45] L.K. Narayanan, P. Huebner, M.B. Fisher, J.T. Spang, B. Starly, R.A. Shirwaiker, 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater. Sci. Eng. 2, 1732 (2016)
[46] F. Diomede, A. Gugliandolo, P. Cardelli, I. Merciaro, V. Ettorre, T. Traini, R. Bedini, D. Scionti, A. Bramanti, A. Nanci, Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res. Ther. 9, 104 (2018)
[47] A. Gugliandolo, F. Diomede, P. Cardelli, A. Bramanti, D. Scionti, P. Bramanti, O. Trubiani, E. Mazzon, Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3 d bioprinted scaffold: a promising strategy for neuroregeneration. J. Biomed. Mater. Res. A 106, 126 (2018)
DOI: 10.1002/jbm.a.36213
[48] da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J (2018)
[49] Schiller C, Epple M. Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters. Biomaterials (2003)
[50] Efficacy of eluted antibiotics through 3D printed femoral implants - Mohammed Mehdi Benmassaoud, Christopher Kohama, Tae Won B. Kim, Shivakumar Ranganathan (2019)
[51] Woodruff MA. DietmarWernerHutmacher, The return of a forgotten polymer - Polycaprolactone in the 21st century. Prog Polym Sci (2010)
[52] Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater (2010)
[53] Dziadek M, Pawlik J, Menaszek E, Stodolak-Zych E, Cholewa-Kowalska K. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. J Biomed Mater Res B Appl Biomater (2015)
DOI: 10.1002/jbm.b.33350
[54] Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation by Obinna Okolie, Anuj Kumar, Christine Edwards, Linda A. Lawton , Adekunle Oke, Seonaidh McDonald, Vijay Kumar Thakur and James Njuguna (2023)
DOI: 10.3390/jcs7060213
[55] Alabood AS, Sivasankaran S. Experimental design and investigation on the mechanical behavior of novel T 3D printed biocompatibility polycarbonate scaffolds for medical applications. J Manuf Process (2018)
[56] Materials and structures used in meniscus repair and regeneration: A review - Ketankumar V. Vadodaria, Abhilash Kulkarni, Elango Santhini, Prakash Vasudevan (2019)
[57] Deng X, Zeng Z, Peng B, Yan S, Ke W. Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials (Basel) (2018)
DOI: 10.3390/ma11020216
[58] Kurtz SM. Chemical and radiation stability of PEEK. Peek Biomaterials Handbook (2012)
[59] Gu X, Sun X, Sun Y, Wang J, Liu Y, Yu K, Wang Y, Zhou Y. Bioinspired modifications of PEEK implants for bone tissue engineering. Front Bioeng Biotechnol (2020)
[60] Qin L, Yao S, Zhao J, Zhou C, Oates TW, Weir MD, Wu J, Xu HHK. Review on development and dental applications of Polyetheretherketone-based biomaterials and restorations. Materials (Basel) (2021)
DOI: 10.3390/ma14020408
[61] Ding R, Chen T, Xu Q, Wei R, Feng B, Weng J, Duan K, Wang J, Zhang K, Zhang X. Mixed modification of the surface microstructure and chemical state of polyetheretherketone to improve its antimicrobial activity, hydrophilicity, cell adhesion, and bone integration. ACS Biomater Sci Eng (2020)
[62] Anabtawi M, Thomas M, Lee NJ. The Use of Interlocking Polyetheretherketone (PEEK) patient-specific facial implants in the treatment of facial deformities. A retrospective review of ten patients. J Oral Maxillofac Surg 2020.
[63] Statnik ES, Dragu C, Besnard C, Lunt AJG, Salimon AI, Maksimkin A, Korsunsky AM. Multi-scale digital image correlation analysis of in situ deformation of open-cell porous ultra-high molecular weight polyethylene foam. Polymers (Basel) (2020)
[64] Ma R, Li Y, Wang J, Yang P, Wang K, Wang W. Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions. J Mater Sci Mater Med (2020)
[65] Sharma N, Aghlmandi S, Cao S, Kunz C, Honigmann P, Thieringer FM. Quality Characteristics and clinical relevance of in-house 3D-printed customized Polyetheretherketone (PEEK) implants for craniofacial reconstruction. J Clin Med (2020)
DOI: 10.3390/jcm9092818
[66] Dodier P, Winter F, Auzinger T, Mistelbauer G, Frischer JM, Wang WT, Mallouhi A, Marik W, Wolfsberger S, Reissig L, Hammadi F, Matula C, Baumann A, Bavinzski G. Single-stage bone resection and cranioplastic reconstruction: comparison of a novel software-derived PEEK workflow with the standard reconstructive method. Int J Oral Maxillofac Surg (2020)
[67] Considerations in computer-aided design for inlay cranioplasty: technical note - Erik Noutn, Maurice Y Mommaerts (2018)
[68] Wang L, Sanders JE, Gardner DJ, Han Y. Effect of fused deposition modeling process parameters on the mechanical properties of a filled polypropylene. Progr Additive Manuf (2018)
[69] Lin H, Shi L, Wang D. A rapid and intelligent designing technique for patient-specific and 3D-printed orthopedic cast. 3D Print Med (2015)
[70] S. Lu, W. Hu, Z. Zhang, T. Zhang. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model (2018)
[71] Li J, Li Y, Ma S, Gao Y, Zuo Y, Hu J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J Biomed Mater Res A (2010)
DOI: 10.1002/jbm.a.32926
[72] Rajesh Rangarajan, Collin K. Blout, Vikas V. Patel, John Itamura Early results of reverse total shoulder arthroplasty using a patient-matched glenoid implant for severe glenoid bone deficiency (2020)
[73] Feng F, Ye L. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci (2010)
DOI: 10.1002/app.32863
[74] Van Alsenoy K, Ryu JH, Girard O. The effect of EVA and TPU custom foot orthoses on running economy, running mechanics, and comfort. Front Sports Act Living (2019)
[75] Oisin Haddow, Essyrose Mathew, Dimitrios A Lamprou. Fused deposition modelling 3D printing proof-of-concept study for personalised inner ear therapy (2021)
DOI: 10.1093/jpp/rgab147
[76] C. Laurencin, M. Deng, Natural and Synthetic Biomedical Polymers (Newnes, 2014)
[77] Neal Hande, Jaime Gutierrez Long-term safety and efficacy of polyurethane foam-covered breast implants
[78] Ankit Chaudhary, Virendra Deo Sinha, Sanjeev Chopra, Gaurav Jain. Low-Cost Customized Cranioplasty with Polymethyl Methacrylate Using 3D Printer Generated Mold: An Institutional Experience and Review of Literature (2020)
[79] Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater (2014)
[80] Guan X, Avci-Adali M, Alarcin E, Cheng H, Kashaf SS, Li Y, Chawla A, Jang HL, Khademhosseini A. Development of hydrogels for regenerative engineering. Biotechnol J (2017)
[81] Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) (2010)
DOI: 10.2217/nnm.10.12
[82] Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel) (2019)
DOI: 10.3390/ma12203323
[83] Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol (2013)
[84] Aswathy S H, Narendrakumar Uttamchand, Manjubala Inderchand. Commercial hydrogels for biomedical applications (2020)
[85] Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC, Jungst T, Malda J, Mironov VA, Nakayama K, Ovsianikov A, Sun W, Takeuchi S, Yoo JJ, Woodfield TBF. A definition of bioinks and their distinction from biomaterial inks. Biofabrication (2018)
[86] Stanton MM, Samitier J, S_anchez S. Bioprinting of 3D hydrogels. Lab Chip (2015)
[87] Mu X, Fitzpatrick V, Kaplan DL. From silk spinning to 3D printing: polymer manufacturing using directed hierarchical molecular assembly. Adv Healthc Mater (2020)
[88] Lim W, Kim GJ, Kim HW, Lee J, Zhang X, Kang MG, Seo JW, Cha JM, Park HJ, Lee MY, Shin SR, Shin SY, Bae H. Kappa-carrageenan-based dual Crosslinkable Bioink for extrusion type Bioprinting. Polymers (Basel) (2020)
[89] Y. Zhu , et al. , 3D printed zirconia ceramic hip joint with precise structure and broad- -spectrum antibacterial properties, Int. J. Nanomed. 14 (2019)
[90] G. Daculsi , History of development and use of the bioceramics and biocomposites, in: I.V. Antoniac (Ed.), Handbook of Bioceramics and Biocomposites, Springer International Publishing, Cham, (2016)
[91] F. Baino , S. Hamzehlou , S. Kargozar , Bioactive glasses: where are we and where are we going? J. Funct. Biomater. 9 (1) (2018)
DOI: 10.3390/jfb9010025
[92] J. Chevalier et al. On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications Biomaterials (2009)
[93] Alumina and Zirconia Ceramics in Joint Replacements - Corrado Piconi, G. Maccauro, Francesco Muratori, E. Brach Del Prever
[94] S. Bose , S. Tarafder , A. Bandyopadhyay , 7 - Hydroxyapatite coatings for metallic implants, in: M. Mucalo (Ed.), Hydroxyapatite (Hap) for Biomedical Applications, Woodhead Publishing, (2015)
[95] Use of bovine pericardium as a wrapping material for hydroxyapatite orbital implants - Mrgha Gupta, Pankaj Puri, Ian Rennie (2002)
DOI: 10.1136/bjo.86.3.288
[96] Hussein, M.A., A.S. Mohammed, and N. Al-Aqeeli, Wear characteristics of metallic biomaterials: a review. Materials (Basel), (2015)
DOI: 10.3390/ma8052749
[97] Schinhammer, M., et al., Biodegradable Fe-based alloys for medical applications: design strategy and degradation characteristics. Eur. Cells Mater., (2010)
[98] Bernd Wegener, Maik Behnke, Stefan Milz, Volkmar Jansson, Christian Redlich, Walter Hermanns, Christof Birkenmaier, Korbinian Pieper, Thomas Weißgärber & Peter Quadbeck. Local and systemic inflammation after implantation of a novel iron based porous degradable bone replacement material in sheep model (2021)
[99] Francis, A., et al., Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci.: Mater. Med., (2015)
[100] Yang, K., & Ren, Y.. Nickel-free austenitic stainless steels for medi- cal applications. Sci. Technol. Adv. Mater; (2010)
[101] Milne, Stuart. "3D printing with stainless steel. "AZoM.com , Azo Materials, 26 July (2019)
[102] Niinomi, Mitsuo, et al. Development of new metallic alloys for biomedical applica- tions, Science Direct, Nov. (2012)
[103] Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges by R. K. Singh Raman and Shervin Eslami Harandi (2017)
DOI: 10.3390/ma10111316
[104] Chakraborty Banerjee, P., et al., Magnesium implants: prospects and challenges. Materials (Basel), (2019)
[105] Karunakaran, R., et al., Additive manufacturing of magnesium alloys. Bioactive mater., (2020)
[106] Kamrani, S. and C. Fleck, Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals, (2019)
[107] Peixuan Zhi, Leixin Liu, Jinke Chang, Chaozong Liu, Qiliang Zhang, Jian Zhou , Ziyu Liu and Yubo Fan. Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material by (2022)
DOI: 10.3390/met12091500
[108] Kabir, H., et al., Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives. Bioactive mater., (2020)
[109] Alon Kafri, Shira Ovadia, Galit Yosafovich-Doitch & Eli Aghion In vivo performances of pure Zn and Zn–Fe alloy as biodegradable implants (2018)
[110] Jakubowicz, J., Special issue:Ti-based biomaterials: synthesis, properties and applications. Materials (Basel, Switzerland), (2020)
[111] Fowler, L., et al., Development of antibacterial Ti-Cu(x) alloys for dental applications: effects of ageing for alloys with up to 10 wt% Cu. Materials (Basel, Switzer- land), (2019)
DOI: 10.3390/ma12234017
[112] Lee, P.-.Y., et al., Comparison of mechanical stability of elastic Titanium, Nickel- Titanium, and stainless steel nails used in the fixation of diaphyseal long bone frac- tures. Materials (Basel, Switzerland), (2018)
DOI: 10.3390/ma11112159
[113] Berasi, C.C.t., et al., Are custom triflange acetabular components effective for re- construction of catastrophic bone loss? Clin. Orthop. Relat. Res., (2015)
[114] http://finestshapes.com/cancer-patient-gets-worlds-first-3d-printed-ribcage-and-sternum-implant
[115] Institute, Cobalt. "History of cobalt. "CobaltInstitute , Cobalt Institute, 11 Dec. (2020)
[116] Tanzi, Maria Cristina, et al. "Biomaterials and Applications. "Foundations of Biomater. Eng., Academic Press, 22 Mar. (2019)
[117] https://www.metal-am.com/desktop-health-launches-dental-binder-jetting-with-cobalt-chrome
[118] Cobalt-Chrome 3D Printing. (n.d.). Retrieved April 18, 2021.