[1]
P. Sokolowska, E. Jastrzebska, A. Dobrzyn, Z. Brzozka, Investigation of the therapeutic potential of new antidiabetic compounds using islet-on-a-chip microfluidic model, Biosensors vol. 12 (5) (May 2022) Art. no. 5.
DOI: 10.3390/bios12050302
Google Scholar
[2]
Ozougwu JC, Obimba KC, Belonwu C, Unakalamba CB: The Pathogenesis and Pathophysiology of Type 1 and Type 2 Diabetes Mellitus. J Physiol Pathophysiol. 2013;4(4):46–57.
DOI: 10.5897/jpap2013.0001
Google Scholar
[3]
A.P. Dufresne, T.V. Ball, N.J. Balmforth, Viscoplastic Saffman–Taylor fingers with and without wall slip, J. Non-Newton. Fluid Mech. vol. 312 (Feb. 2023) 104970.
DOI: 10.1016/j.jnnfm.2022.104970
Google Scholar
[4]
American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67–S74.
DOI: 10.2337/dc13-s067
Google Scholar
[5]
Bauer S: Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Scientific Reports. 2017;7(1):1–11.
DOI: 10.1038/s41598-017-14815-w
Google Scholar
[6]
Landman GW, Bilo HJ, Houweling ST, Kleefstra N: Chromium does not belong in the diabetes treatment arsenal: current evidence and future perspectives. World J Diabetes. 2014; 5(2): 160–4.
DOI: 10.4239/wjd.v5.i2.160
Google Scholar
[7]
J. Konopka, D. Kołodziejek, M. Flont, A. ˙ Zuchowska, E. Jastrzębska, Z. Brz´ ozka, Exploring endothelial expansion on a chip, Sens. (Basel) vol. 22 (23) (Dec. 2022) 9414
DOI: 10.3390/s22239414
Google Scholar
[8]
Wendt A, Eliasson L: Pancreatic α-cells –The unsung heroes in islet function. Seminars in Cell and Developmental Biology. 2020;103:41–50.
DOI: 10.1016/j.semcdb.2020.01.006
Google Scholar
[9]
Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller Y, et al.: Unique arrangement of α- and β-cells in human islets of Langerhans. Diabetes. 2010;59(5):1202–1210.
DOI: 10.2337/db09-1177
Google Scholar
[10]
Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. U.S.A. 2006;103(7):2334–2339.
DOI: 10.1073/pnas.0510790103
Google Scholar
[11]
T. Qin, A.M. Smink, P. de Vos, Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment, Acta Biomater. vol. 167 (Sep. 2023) 38–53.
DOI: 10.1016/j.actbio.2023.06.038
Google Scholar
[12]
J. Chmielowiec, et al., Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling, , Art. no. 1, Nat. Commun. vol. 13 (1) (Apr. 2022).
DOI: 10.1038/s41467-022-29646-1
Google Scholar
[13]
A.P. Dufresne, T.V. Ball, N.J. Balmforth, Viscoplastic Saffman–Taylor fingers with and without wall slip, J. Non-Newton. Fluid Mech. vol. 312 (Feb. 2023) 104970.
DOI: 10.1016/j.jnnfm.2022.104970
Google Scholar
[14]
F. S. A, et al., Engineering vascularized islet macroencapsulation devices: an in vitro platform to study oxygen transport in perfused immobilized pancreatic beta cell cultures, Front. Bioeng. Biotechnol. vol. 10 (2022).
DOI: 10.3389/fbioe.2022.884071
Google Scholar
[15]
D. J. McIver et al., Risk of Type 2 Diabetes Is Lower in US Adults Taking Chromium-Containing Supplements, J. Nutr., vol. 145, no. 12, p.2675–82, Dec. 2015.
DOI: 10.3945/jn.115.214569
Google Scholar
[16]
N. I. Desouki et al., Improvement in beta-islets of Langerhans in alloxan-induced diabetic rats by erythropoietin and spirulina," J. Basic Appl. Zool., vol. 71, p.20–31, Apr. 2015.
DOI: 10.1016/j.jobaz.2015.04.003
Google Scholar
[17]
P. Sokolowska, J. Janikiewicz, E. Jastrzebska, Z. Brzozka, and A. Dobrzyn, Combinations of regenerative medicine and Lab-on-a-chip systems: New hope to restoring the proper function of pancreatic islets in diabetes, Biosens. Bioelectron., vol. 167, p.112451, May 2020.
DOI: 10.1016/j.bios.2020.112451
Google Scholar
[18]
A. Essaouiba, T. Okitsu, R. Kinoshita, R. Jellali, M. Shinohara, M. Danoy, et al., "Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies," Biochem. Eng. J., vol. 164, p.107783, November 2020.
DOI: 10.1016/j.bej.2020.107783
Google Scholar
[19]
S. Malkani and S. Ayyoub, Diabetes mellitus tipo 2 | Enfermedades y condiciones | 5MinutoConsultar, Diabetes mellitus tipo 2, 2021.
Google Scholar
[20]
C. Ma, Y. Peng, H. Li, and W. Chen, Organ-on-a-Chip: A New Paradigm for Drug Development, Trends Pharmacol. Sci., vol. 42, no. 2, p.119–133, February 2021.
Google Scholar
[21]
P. Sokolowska, K. Zukowski, J. Janikiewicz, E. Jastrzebska, A. Dobrzyn, Z. Brzozka, Islet-on-a-chip: biomimetic micropillar-based microfluidic system for three dimensional pancreatic islet cell culture, Biosens. Bioelectron. vol. 183 (Jul. 2021) 113215.
DOI: 10.1016/j.bios.2021.113215
Google Scholar
[22]
Q. Wu, J. Liu, X. Wang, L. Feng, J. Wu, X. Zhu, W. Wen, and X. Gong, Organ-on-a-chip: Recent breakthroughs and future prospects, BioMed Eng. Online, 19, no. 1, p.1–19, January 2020.
DOI: 10.1186/s12938-020-0752-0
Google Scholar
[23]
J. E. Sosa-Hernández, A. M. Villalba-Rodríguez, K. D. Romero-Castillo, M. A. Aguilar-Aguila-Isaías, I. E. García-Reyes, A. Hernández-Antonio, I. Ahmed, A. Sharma, R. Parra-Saldívar, and H. M. N. Iqbal, Organs-on-a-chip module: A review from the development and applications perspective, Micromachines, vol. 9, no. 10, p.100536.
DOI: 10.3390/mi9100536
Google Scholar
[24]
Wyss Institute, "Pulmón en un chip," Wyss Institute, 2011. [Online].
Google Scholar
[25]
G.W. Landman, H.J. Bilo, S.T. Houweling, and N. Kleefstra, Chromium does not belong in the diabetes treatment arsenal: current evidence and future perspectives, World J Diabetes, vol. 5, no. 2, p.160–164, February 2014.
DOI: 10.4239/wjd.v5.i2.160
Google Scholar
[26]
World Precision Instruments, Mini peristaltic pump," WPI. [Online]. Available: https://www.wpiinc.com/var-3125-mini-peristaltic-pump.
Google Scholar
[27]
W.E. Svendsen, Chapter 2: Basic Microfluidics Theory, in J. Castillo-León and W.E. Svendsen, Eds., Lab-on-a-Chip Devices and Micro-Total Analysis Systems A practical guide, London: Springer, 2015, pp.17-26.
DOI: 10.1007/978-3-319-08687-3_2
Google Scholar
[28]
K.H. Oh, K. Lee, B. Ahn, and E.P. Furlani, "Design of pressure-driven microfluidic networks using electric circuit analogy," Lab Chip, vol. 12, no. 3, p.515–545, March 2012.
DOI: 10.1039/C2LC20799K
Google Scholar
[29]
O. Ramirez-Fernandez, F. Equihua-Guillen, A. Garcia-Lara, and E. Zuñiga-Aguilar, Design and Characterization of a Microfluidic Biological System for Bone Tissue, in Congreso Nacional de Ingeniería Biomédica, Cham, Switzerland: Springer Nature, Oct. 2023, pp.93-99.
DOI: 10.1007/978-3-031-46933-6_10
Google Scholar
[30]
L. Jasson and P.O. Carlsson, Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans, Compr. Physiol., vol. 9, no. 2, p.799–837.
DOI: 10.1002/cphy.c160050
Google Scholar