Design and Simulation of a Microfluidic System for Hydrodynamic Irrigation of In Vitro Pancreatic Islets

soon available
Article Preview

Abstract:

Microfluidic systems are transforming chemical and biological research by enabling precise control and analysis of fluids on a microscale. This study presents the design and computational simulation of a microfluidic system for the in vitro maintenance of pancreatic islets, critical endocrine structures of the pancreas involved in glucose regulation. Three chamber geometries-ellipsoidal, hexagonal, and rectangular-were proposed, each combined with three irrigation patterns: periphery-to-center, pole-to-pole, and a hybrid model. A total of 18 design configurations were analyzed. The irrigation channels, with a diameter of 30 µm and a bifurcation angle of 43°, were designed to mimic physiological conditions, facilitating efficient nutrient exchange. Computational fluid dynamics (CFD) simulations using ANSYS Fluent demonstrated that most designs achieved a flow rate of 14.56 nL/s, closely matching theoretical values and meeting the physiological requirements of islets. Among the proposed models, the hexagonal chamber with peripheral irrigation (single-cell configuration) and the ellipsoidal chamber with periphery-to-center irrigation (dual-cell configuration) showed optimal performance, with stable laminar flow and minimal pressure drop. These results highlight the potential of this microfluidic system as an innovative tool for diabetes research, enabling the study of islet biology, drug testing, and disease modeling under controlled conditions. Future work will focus on experimental validation and optimization of the proposed designs.

Info:

Pages:

93-104

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Sokolowska, E. Jastrzebska, A. Dobrzyn, Z. Brzozka, Investigation of the therapeutic potential of new antidiabetic compounds using islet-on-a-chip microfluidic model, Biosensors vol. 12 (5) (May 2022) Art. no. 5.

DOI: 10.3390/bios12050302

Google Scholar

[2] Ozougwu JC, Obimba KC, Belonwu C, Unakalamba CB: The Pathogenesis and Pathophysiology of Type 1 and Type 2 Diabetes Mellitus. J Physiol Pathophysiol. 2013;4(4):46–57.

DOI: 10.5897/jpap2013.0001

Google Scholar

[3] A.P. Dufresne, T.V. Ball, N.J. Balmforth, Viscoplastic Saffman–Taylor fingers with and without wall slip, J. Non-Newton. Fluid Mech. vol. 312 (Feb. 2023) 104970.

DOI: 10.1016/j.jnnfm.2022.104970

Google Scholar

[4] American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67–S74.

DOI: 10.2337/dc13-s067

Google Scholar

[5] Bauer S: Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Scientific Reports. 2017;7(1):1–11.

DOI: 10.1038/s41598-017-14815-w

Google Scholar

[6] Landman GW, Bilo HJ, Houweling ST, Kleefstra N: Chromium does not belong in the diabetes treatment arsenal: current evidence and future perspectives. World J Diabetes. 2014; 5(2): 160–4.

DOI: 10.4239/wjd.v5.i2.160

Google Scholar

[7] J. Konopka, D. Kołodziejek, M. Flont, A. ˙ Zuchowska, E. Jastrzębska, Z. Brz´ ozka, Exploring endothelial expansion on a chip, Sens. (Basel) vol. 22 (23) (Dec. 2022) 9414

DOI: 10.3390/s22239414

Google Scholar

[8] Wendt A, Eliasson L: Pancreatic α-cells –The unsung heroes in islet function. Seminars in Cell and Developmental Biology. 2020;103:41–50.

DOI: 10.1016/j.semcdb.2020.01.006

Google Scholar

[9] Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller Y, et al.: Unique arrangement of α- and β-cells in human islets of Langerhans. Diabetes. 2010;59(5):1202–1210.

DOI: 10.2337/db09-1177

Google Scholar

[10] Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. U.S.A. 2006;103(7):2334–2339.

DOI: 10.1073/pnas.0510790103

Google Scholar

[11] T. Qin, A.M. Smink, P. de Vos, Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment, Acta Biomater. vol. 167 (Sep. 2023) 38–53.

DOI: 10.1016/j.actbio.2023.06.038

Google Scholar

[12] J. Chmielowiec, et al., Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling, , Art. no. 1, Nat. Commun. vol. 13 (1) (Apr. 2022).

DOI: 10.1038/s41467-022-29646-1

Google Scholar

[13] A.P. Dufresne, T.V. Ball, N.J. Balmforth, Viscoplastic Saffman–Taylor fingers with and without wall slip, J. Non-Newton. Fluid Mech. vol. 312 (Feb. 2023) 104970.

DOI: 10.1016/j.jnnfm.2022.104970

Google Scholar

[14] F. S. A, et al., Engineering vascularized islet macroencapsulation devices: an in vitro platform to study oxygen transport in perfused immobilized pancreatic beta cell cultures, Front. Bioeng. Biotechnol. vol. 10 (2022).

DOI: 10.3389/fbioe.2022.884071

Google Scholar

[15] D. J. McIver et al., Risk of Type 2 Diabetes Is Lower in US Adults Taking Chromium-Containing Supplements, J. Nutr., vol. 145, no. 12, p.2675–82, Dec. 2015.

DOI: 10.3945/jn.115.214569

Google Scholar

[16] N. I. Desouki et al., Improvement in beta-islets of Langerhans in alloxan-induced diabetic rats by erythropoietin and spirulina," J. Basic Appl. Zool., vol. 71, p.20–31, Apr. 2015.

DOI: 10.1016/j.jobaz.2015.04.003

Google Scholar

[17] P. Sokolowska, J. Janikiewicz, E. Jastrzebska, Z. Brzozka, and A. Dobrzyn, Combinations of regenerative medicine and Lab-on-a-chip systems: New hope to restoring the proper function of pancreatic islets in diabetes, Biosens. Bioelectron., vol. 167, p.112451, May 2020.

DOI: 10.1016/j.bios.2020.112451

Google Scholar

[18] A. Essaouiba, T. Okitsu, R. Kinoshita, R. Jellali, M. Shinohara, M. Danoy, et al., "Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies," Biochem. Eng. J., vol. 164, p.107783, November 2020.

DOI: 10.1016/j.bej.2020.107783

Google Scholar

[19] S. Malkani and S. Ayyoub, Diabetes mellitus tipo 2 | Enfermedades y condiciones | 5MinutoConsultar, Diabetes mellitus tipo 2, 2021.

Google Scholar

[20] C. Ma, Y. Peng, H. Li, and W. Chen, Organ-on-a-Chip: A New Paradigm for Drug Development, Trends Pharmacol. Sci., vol. 42, no. 2, p.119–133, February 2021.

Google Scholar

[21] P. Sokolowska, K. Zukowski, J. Janikiewicz, E. Jastrzebska, A. Dobrzyn, Z. Brzozka, Islet-on-a-chip: biomimetic micropillar-based microfluidic system for three dimensional pancreatic islet cell culture, Biosens. Bioelectron. vol. 183 (Jul. 2021) 113215.

DOI: 10.1016/j.bios.2021.113215

Google Scholar

[22] Q. Wu, J. Liu, X. Wang, L. Feng, J. Wu, X. Zhu, W. Wen, and X. Gong, Organ-on-a-chip: Recent breakthroughs and future prospects, BioMed Eng. Online, 19, no. 1, p.1–19, January 2020.

DOI: 10.1186/s12938-020-0752-0

Google Scholar

[23] J. E. Sosa-Hernández, A. M. Villalba-Rodríguez, K. D. Romero-Castillo, M. A. Aguilar-Aguila-Isaías, I. E. García-Reyes, A. Hernández-Antonio, I. Ahmed, A. Sharma, R. Parra-Saldívar, and H. M. N. Iqbal, Organs-on-a-chip module: A review from the development and applications perspective, Micromachines, vol. 9, no. 10, p.100536.

DOI: 10.3390/mi9100536

Google Scholar

[24] Wyss Institute, "Pulmón en un chip," Wyss Institute, 2011. [Online].

Google Scholar

[25] G.W. Landman, H.J. Bilo, S.T. Houweling, and N. Kleefstra, Chromium does not belong in the diabetes treatment arsenal: current evidence and future perspectives, World J Diabetes, vol. 5, no. 2, p.160–164, February 2014.

DOI: 10.4239/wjd.v5.i2.160

Google Scholar

[26] World Precision Instruments, Mini peristaltic pump," WPI. [Online]. Available: https://www.wpiinc.com/var-3125-mini-peristaltic-pump.

Google Scholar

[27] W.E. Svendsen, Chapter 2: Basic Microfluidics Theory, in J. Castillo-León and W.E. Svendsen, Eds., Lab-on-a-Chip Devices and Micro-Total Analysis Systems A practical guide, London: Springer, 2015, pp.17-26.

DOI: 10.1007/978-3-319-08687-3_2

Google Scholar

[28] K.H. Oh, K. Lee, B. Ahn, and E.P. Furlani, "Design of pressure-driven microfluidic networks using electric circuit analogy," Lab Chip, vol. 12, no. 3, p.515–545, March 2012.

DOI: 10.1039/C2LC20799K

Google Scholar

[29] O. Ramirez-Fernandez, F. Equihua-Guillen, A. Garcia-Lara, and E. Zuñiga-Aguilar, Design and Characterization of a Microfluidic Biological System for Bone Tissue, in Congreso Nacional de Ingeniería Biomédica, Cham, Switzerland: Springer Nature, Oct. 2023, pp.93-99.

DOI: 10.1007/978-3-031-46933-6_10

Google Scholar

[30] L. Jasson and P.O. Carlsson, Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans, Compr. Physiol., vol. 9, no. 2, p.799–837.

DOI: 10.1002/cphy.c160050

Google Scholar