[1]
P. Weiner, J. Starke, S. Rader, F. Hundhausen, and T. Asfour, "Designing prosthetic hands with embodied intelligence: The kit prosthetic hands," Frontiers in Neurorobotics, vol. 16, 2022.
DOI: 10.3389/fnbot.2022.815716
Google Scholar
[2]
B. Maat, G. Smit, D. Plettenburg, and P. Breedveld, "Passive prosthetic hands and tools: A literature review," Prosthetics and Orthotics International, vol. 42, no. 1, p.66, Feb. 2018. [Online]. Available: https://journals.lww.com/poijournal/abstract/2018/42010/passive_ prosthetic_hands_and_tools__a_literature.11.aspx
DOI: 10.1177/0309364617691622
Google Scholar
[3]
A. Furui, S. Eto, K. Nakagaki, K. Shimada, G. Nakamura, A. Masuda, T. Chin, and T. Tsuji, "A myoelectric prosthetic hand with muscle synergy–based motion determination and impedance model–based biomimetic control," Science Robotics, vol. 4, no. 31, p. eaaw6339, 2019. [Online]. Available: https://www.science.org/doi/abs/
DOI: 10.1126/scirobotics.aaw6339
Google Scholar
[4]
M. Cardona, M. Destarac, and C. G. Cena, Robotics for Rehabilitation: A State of the Art. Singapore: Springer Singapore, 2020, p.1–11. [Online]. Available: https://doi.org/10.1007/ 978-981-15-4732-4_1
Google Scholar
[5]
Design of an Affordable Prosthetic Arm Equipped With Deep Learning Vision-Based Manipulation, ser. ASME International Mechanical Engineering Congress and Exposition, vol. Volume 6: Design, Systems, and Complexity, 11 2021. [Online]. Available: https: //doi.org/
DOI: 10.1115/IMECE2021-68714
Google Scholar
[6]
X. Liu, J. Wang, T. Han, C. Lou, T. Liang, H. Wang, and X. Liu, "Real-Time Control of Intelligent Prosthetic Hand Based on the Improved TCN," Applied Bionics and Biomechanics, vol. 2022, p.6488599, May 2022, publisher: Hindawi. [Online]. Available: https://doi.org/10. 1155/2022/6488599
DOI: 10.1155/2022/6488599
Google Scholar
[7]
S. R. Kashef, S. Amini, and A. Akbarzadeh, "Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria," Mechanism and Machine Theory, vol. 145, p.103677, Mar. 2020. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S0094114X19322839
DOI: 10.1016/j.mechmachtheory.2019.103677
Google Scholar
[8]
"The Hannes hand prosthesis replicates the key biological properties of the human hand | Science Robotics." [Online]. Available: https://www.science.org/doi/
DOI: 10.1126/scirobotics.abb0467
Google Scholar
[9]
"Galileo Hand: An Anthropomorphic and Affordable Upper-Limb Prosthesis | IEEE Journals & Magazine | IEEE Xplore." [Online]. Available: https://ieeexplore.ieee.org/document/9079853
Google Scholar
[10]
C. Piazza, M. Catalano, S. Godfrey, M. Rossi, G. Grioli, M. Bianchi, K. Zhao, and A. Bicchi, "The SoftHand Pro-H: A Hybrid Body-Controlled, Electrically Powered Hand Prosthesis for Daily Living and Working," IEEE Robotics & Automation Magazine, vol. 24, no. 4, p.87–101, Dec. 2017, conference Name: IEEE Robotics & Automation Magazine. [Online]. Available: https://ieeexplore.ieee.org/document/8110634
DOI: 10.1109/mra.2017.2751662
Google Scholar
[11]
"The Utility of Synthetic Reflexes and Haptic Feedback for Upper-Limb Prostheses in a Dexterous Task Without Direct Vision | IEEE Journals & Magazine | IEEE Xplore." [Online]. Available: https://ieeexplore.ieee.org/document/9942813
DOI: 10.1109/tnsre.2022.3217452
Google Scholar
[12]
"Micromachines | Free Full-Text | An Improved Approach for Grasp Force Sensing and Control of Upper Limb Soft Robotic Prosthetics." [Online]. Available: https://www.mdpi.com/ 2072-666X/14/3/596
DOI: 10.3390/mi14030596
Google Scholar
[13]
E. Fujiwara, Y. T. Wu, C. K. Suzuki, D. T. G. de Andrade, A. R. Neto, and E. Rohmer, "Optical fiber force myography sensor for applications in prosthetic hand control," in 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Mar. 2018, p.342–347, iSSN: 1943-6580. [Online]. Available: https://ieeexplore.ieee.org/document/8371115
DOI: 10.1109/amc.2019.8371115
Google Scholar
[14]
P. Kyberd, A. F. Popa, and T. Cojean, "A Tool to Assist in the Analysis of Gaze Patterns in Upper Limb Prosthetic Use," Prosthesis, vol. 5, no. 3, p.898–915, Sep. 2023, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2673-1592/5/3/63
DOI: 10.3390/prosthesis5030063
Google Scholar
[15]
T. Zhang, L. Jiang, and H. Liu, "Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 7, p.1391–1399, Jul. 2018, conference Name: IEEE Transactions on Neural Systems and Rehabilitation Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/8374914
DOI: 10.1109/tnsre.2018.2844807
Google Scholar
[16]
M. Alameh, M. Saleh, F. Ansovini, H. Fares, A. Ibrahim, M. Franceschi, L. Seminara, M. Valle, S. Dosen, and D. Farina, "Live Demonstration: System based on Electronic Skin and Cutaneous Electrostimulation for Sensory Feedback in Prosthetics," in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct. 2018, p.1–1, iSSN: 2163-4025. [Online]. Available: https://ieeexplore.ieee.org/document/8584710
DOI: 10.1109/biocas.2018.8584710
Google Scholar
[17]
X. Chen, Y. Li, R. Hu, X. Zhang, and X. Chen, "Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method," IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 4, p.1292–1304, Apr. 2021, conference Name: IEEE Journal of Biomedical and Health Informatics. [Online]. Available: https://ieeexplore.ieee.org/document/9141383
DOI: 10.1109/jbhi.2020.3009383
Google Scholar
[18]
K. A. Walsh, S. P. Sanford, B. D. Collins, N. Y. Harel, and R. Nataraj, "Performance potential of classical machine learning and deep learning classifiers for isometric upperbody myoelectric control of direction in virtual reality with reduced muscle inputs," Biomedical Signal Processing and Control, vol. 66, p.102487, Apr. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809421000847
DOI: 10.1016/j.bspc.2021.102487
Google Scholar
[19]
L. Wu, X. Zhang, X. Zhang, X. Chen, and X. Chen, "Metric learning for novel motion rejection in high-density myoelectric pattern recognition," Knowledge-Based Systems, vol. 227, p.107165, Sep. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0950705121004287
DOI: 10.1016/j.knosys.2021.107165
Google Scholar
[20]
A. Leccia, M. Sallam, S. Grazioso, T. Caporaso, G. Di Gironimo, and F. Ficuciello, "Development and testing of a virtual simulator for a myoelectric prosthesis prototype – the PRISMA Hand II – to improve its usability and acceptability," Engineering Applications of Artificial Intelligence, vol. 121, p.105853, May 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197623000374
DOI: 10.1016/j.engappai.2023.105853
Google Scholar
[21]
J. Fajardo, V. Ferman, A. Muñoz, D. Andrade, A. Ribas Neto, and E. Rohmer, "User-Prosthesis Interface for Upper Limb Prosthesis Based on Object Classification," Nov. 2018.
DOI: 10.1109/lars/sbr/wre.2018.00076
Google Scholar
[22]
M. Kumar, Krishnanand, A. Varshney, and M. Taufik, "Hand prosthetics fabrication using additive manufacturing," Materials Today: Proceedings, Jul. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785323037902
DOI: 10.1016/j.matpr.2023.06.396
Google Scholar
[23]
B. Li, S. Zhang, L. Zhang, Y. Gao, and F. Xuan, "Strain sensing behavior of FDM 3D printed carbon black filled TPU with periodic configurations and flexible substrates," Journal of Manufacturing Processes, vol. 74, p.283–295, Feb. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612521009142
DOI: 10.1016/j.jmapro.2021.12.020
Google Scholar
[24]
S. Masihi, M. Panahi, D. Maddipatla, A. J. Hanson, S. Fenech, L. Bonek, N. Sapoznik, P. D. Fleming, B. J. Bazuin, and M. Z. Atashbar, "Development of a Flexible Wireless ECG Monitoring Device With Dry Fabric Electrodes for Wearable Applications," IEEE Sensors Journal, vol. 22, no. 12, pp.11-223–11 232, Jun. 2022, conference Name: IEEE Sensors Journal.
DOI: 10.1109/jsen.2021.3116215
Google Scholar
[25]
N. Vidakis, M. Petousis, E. Velidakis, M. Liebscher, V. Mechtcherine, and L. Tzounis, "On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers," Polymers, vol. 12, no. 12, p.2924, Dec. 2020, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2073-4360/12/12/2924
DOI: 10.3390/polym12122924
Google Scholar
[26]
A. S. Karad, P. D. Sonawwanay, M. Naik, and D. G. Thakur, "Experimental tensile strength analysis of ABS material through FDM technique," Materials Today: Proceedings, Sep. 2023.
DOI: 10.1016/j.matpr.2023.09.216
Google Scholar
[27]
K. Xu and S. Qin, "An Interdisciplinary Approach and Advanced Techniques for Enhanced 3D-Printed Upper Limb Prosthetic Socket Design: A Literature Review," Actuators, vol. 12, no. 6, p.223, Jun. 2023, number: 6 Publisher: Multidisciplinary Digital Publishing Institute.
DOI: 10.3390/act12060223
Google Scholar
[28]
A. Manero, J. Sparkman, M. Dombrowski, P. Smith, P. Senthil, S. Smith, V. Rivera, and A. Chi, "Evolving 3D-Printing Strategies for Structural and Cosmetic Components in Upper Limb Prosthesis," Prosthesis, vol. 5, no. 1, p.167–181, Mar. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/ 2673-1592/5/1/13
DOI: 10.3390/prosthesis5010013
Google Scholar
[29]
M. Semprini, N. Boccardo, A. Lince, S. Traverso, L. Lombardi, A. Succi, M. Canepa, V. Squeri, J. A. Saglia, P. Ariano, L. Reale, P. Randi, S. Castellano, E. Gruppioni, M. Laffranchi, and L. De Michieli, "Chapter 11 - Clinical evaluation of Hannes: measuring the usability of a novel polyarticulated prosthetic hand," in Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation, Q. Li, S. Luo, Z. Chen, C. Yang, and J. Zhang, Eds. Academic Press, Jan. 2022, p.205
DOI: 10.1016/b978-0-32-390445-2.00020-9
Google Scholar
[30]
A. Mohammadi, J. Lavranos, Y. Tan, P. Choong, and D. Oetomo, "A Paediatric 3D-Printed Soft Robotic Hand Prosthesis for Children with Upper Limb Loss," in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Jul. 2020, p.3310–3313, iSSN: 2694-0604. [Online]. Available: https://ieeexplore.ieee.org/ document/9176848
DOI: 10.1109/embc44109.2020.9176848
Google Scholar
[31]
B. S. Morais, S. L. Nogueira, T. L. Russo, G. L. Santos, L. F. G. Salazar, and A. N. Montagnoli, "Analysis of Myoelectric Signals to Prosthesis Applications," Journal of Physics: Conference Series, vol. 1826, no. 1, p.012084, Mar. 2021, publisher: IOP Publishing. [Online]. Available:
DOI: 10.1088/1742-6596/1826/1/012084
Google Scholar
[32]
L. Wu, X. Zhang, K. Wang, X. Chen, and X. Chen, "Improved High-Density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural Network," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 12, p.2637–2646, Dec. 2020, conference Name: IEEE Transactions on Neural Systems and Rehabilitation Engineering. [Online]. Available: https://ieeexplore.ieee. org/document/9223702
DOI: 10.1109/tnsre.2020.3030931
Google Scholar
[33]
G. R. Naik, A. H. Al-Timemy, and H. T. Nguyen, "Transradial amputee gesture classification using an optimal number of semg sensors: An approach using ica clustering," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 8, p.837–846, 2016.
DOI: 10.1109/tnsre.2015.2478138
Google Scholar
[34]
C. Copeland, C. C. Reyes, J. L. Peck, R. Srivastava, and J. M. Zuniga, "Functional performance and patient satisfaction comparison between a 3D printed and a standard transradial prosthesis: a case report," BioMedical Engineering OnLine, vol. 21, no. 1, p.7, Jan. 2022. [Online]. Available:
DOI: 10.1186/s12938-022-00977-w
Google Scholar
[35]
L. Zhang, "A Self-Selected Movement Classification Method for Forearm Via sEMG and Attitude Sensor," Jul. 2020, iSSN: 2693-5015. [Online]. Available: https://www.researchsquare. com/article/rs-37344/v1
DOI: 10.21203/rs.3.rs-37344/v1
Google Scholar
[36]
J. M. Zuniga, J. L. Peck, R. Srivastava, J. E. Pierce, D. R. Dudley, N. A. Than, and N. Stergiou, "Functional changes through the usage of 3D-printed transitional prostheses in children," Disability and Rehabilitation: Assistive Technology, vol. 14, no. 1, p.68–74, Jan. 2019, publisher: Taylor & Francis _eprint:. [Online]. Available:
DOI: 10.1080/17483107.2017.1398279
Google Scholar
[37]
D. Chappell, H. W. Son, A. B. Clark, Z. Yang, F. Bello, P. Kormushev, and N. Rojas, "Virtual Reality Pre-Prosthetic Hand Training With Physics Simulation and Robotic Force Interaction," IEEE Robotics and Automation Letters, vol. 7, no. 2, p.4550–4557, Apr. 2022, conference Name: IEEE Robotics and Automation Letters. [Online]. Available: https://ieeexplore.ieee.org/document/9714006
DOI: 10.1109/lra.2022.3151569
Google Scholar
[38]
G. Li, A. E. Schultz, and T. A. Kuiken, "Quantifying Pattern Recognition—Based Myoelectric Control of Multifunctional Transradial Prostheses," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 2, p.185–192, Apr. 2010, conference Name: IEEE Transactions on Neural Systems and Rehabilitation Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/5378627
DOI: 10.1109/tnsre.2009.2039619
Google Scholar
[39]
B. Xu, K. Zhang, X. Yang, D. Liu, C. Hu, H. Li, and A. Song, "Natural grasping movement recognition and force estimation using electromyography," Frontiers in Neuroscience, vol. 16, Oct. 2022, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/journals/ neuroscience/articles/
DOI: 10.3389/fnins.2022.1020086
Google Scholar
[40]
X. Liu, J. Wang, T. Han, C. Lou, T. Liang, H. Wang, and X. Liu, "Real-Time Control of Intelligent Prosthetic Hand Based on the Improved TCN," Applied Bionics and Biomechanics, vol. 2022, p. e6488599, May 2022, publisher: Hindawi. [Online]. Available: https://www. hindawi.com/journals/abb/2022/6488599/
DOI: 10.1155/2022/6488599
Google Scholar
[41]
J. S. Cuellar, G. Smit, P. Breedveld, A. A. Zadpoor, and D. Plettenburg, "Functional evaluation of a non-assembly 3D-printed hand prosthesis," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 233, no. 11, p.1122–1131, Nov. 2019, publisher: IMECHE. [Online]. Available:
DOI: 10.1177/0954411919874523
Google Scholar
[42]
E. Hocaoglu and V. Patoglu, "sEMG-Based Natural Control Interface for a Variable Stiffness Transradial Hand Prosthesis," Frontiers in Neurorobotics, vol. 16, Mar. 2022, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/articles/
DOI: 10.3389/fnbot.2022.789341
Google Scholar
[43]
B. D. Winslow, M. Ruble, and Z. Huber, "Mobile, Game-Based Training for Myoelectric Prosthesis Control," Frontiers in Bioengineering and Biotechnology, vol. 6, Jul. 2018, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/articles/
DOI: 10.3389/fbioe.2018.00094
Google Scholar
[44]
P. Medina-Coello, B. Salvador-Domínguez, F. J. Badesa, J. M. Rodríguez Corral, H. Plastrotmann, and A. Morgado-Estévez, "Anthropomorphic robotic hand prosthesis developed for children," Biomimetics, vol. 9, no. 7, 2024. [Online]. Available: https://www.mdpi.com/2313-7673/9/7/401
DOI: 10.3390/biomimetics9070401
Google Scholar
[45]
G. Fonseca, J. Nunes-Pereira, and A. P. Silva, "3D Printed Robotic Hand with Piezoresistive Touch Capability," Applied Sciences, vol. 13, no. 14, p.8002, Jan. 2023, number: 14 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/ 2076-3417/13/14/8002
DOI: 10.3390/app13148002
Google Scholar
[46]
H. Bayoumi, M. I. Awad, and S. A. Maged, "An improved approach for grasp force sensing and control of upper limb soft robotic prosthetics," Micromachines, vol. 14, no. 3, 2023. [Online]. Available: https://www.mdpi.com/2072-666X/14/3/596
DOI: 10.3390/mi14030596
Google Scholar
[47]
J. Luis Ordoñez Avila, M. Elena Perdomo, M. Yanire Rivas Bejarano, and J. Luis Ordoñez Fernández, "Mechanical displacement for 3d printers' parts using fem as inverse engineering method in honduras," Journal of Physics: Conference Series, vol. 1877, no. 1, p.012013, apr 2021. [Online]. Available:
DOI: 10.1088/1742-6596/1877/1/012013
Google Scholar