A 3D Printing Soft Prosthesis and an IoT Architecture for Controlling Gestures

soon available
Article Preview

Abstract:

Upper limb prosthesis have been evolving since 1967, progressing from mechanical prosthesis to robotic prosthesis, integrating electronics with emerging materials. This work aims to develop a low-cost integrated active upper limb prosthesis using additive manufacturing, controlled by the user with a myoelectric sensor to perform three hand gestures: power grip, two-fingered cup movement, and gripper actions. The prosthesis is based on the reduction of degrees of freedom, the analysis of five additive manufacturing materials, and the implementation of a neural network to control the gestures performed by the prosthesis. The precision obtained in the best model saved by the neural network was 91.25% and a recall of 90.75%. A key contribution of this work is the integration of soft 3D printing materials, which enhance object grasping by conforming to various shapes. In this case, grasping was achieved using a driven cable and a flex sensor in three gestures with different objects.

Info:

Pages:

137-150

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Weiner, J. Starke, S. Rader, F. Hundhausen, and T. Asfour, "Designing prosthetic hands with embodied intelligence: The kit prosthetic hands," Frontiers in Neurorobotics, vol. 16, 2022.

DOI: 10.3389/fnbot.2022.815716

Google Scholar

[2] B. Maat, G. Smit, D. Plettenburg, and P. Breedveld, "Passive prosthetic hands and tools: A literature review," Prosthetics and Orthotics International, vol. 42, no. 1, p.66, Feb. 2018. [Online]. Available: https://journals.lww.com/poijournal/abstract/2018/42010/passive_ prosthetic_hands_and_tools__a_literature.11.aspx

DOI: 10.1177/0309364617691622

Google Scholar

[3] A. Furui, S. Eto, K. Nakagaki, K. Shimada, G. Nakamura, A. Masuda, T. Chin, and T. Tsuji, "A myoelectric prosthetic hand with muscle synergy–based motion determination and impedance model–based biomimetic control," Science Robotics, vol. 4, no. 31, p. eaaw6339, 2019. [Online]. Available: https://www.science.org/doi/abs/

DOI: 10.1126/scirobotics.aaw6339

Google Scholar

[4] M. Cardona, M. Destarac, and C. G. Cena, Robotics for Rehabilitation: A State of the Art. Singapore: Springer Singapore, 2020, p.1–11. [Online]. Available: https://doi.org/10.1007/ 978-981-15-4732-4_1

Google Scholar

[5] Design of an Affordable Prosthetic Arm Equipped With Deep Learning Vision-Based Manipulation, ser. ASME International Mechanical Engineering Congress and Exposition, vol. Volume 6: Design, Systems, and Complexity, 11 2021. [Online]. Available: https: //doi.org/

DOI: 10.1115/IMECE2021-68714

Google Scholar

[6] X. Liu, J. Wang, T. Han, C. Lou, T. Liang, H. Wang, and X. Liu, "Real-Time Control of Intelligent Prosthetic Hand Based on the Improved TCN," Applied Bionics and Biomechanics, vol. 2022, p.6488599, May 2022, publisher: Hindawi. [Online]. Available: https://doi.org/10. 1155/2022/6488599

DOI: 10.1155/2022/6488599

Google Scholar

[7] S. R. Kashef, S. Amini, and A. Akbarzadeh, "Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria," Mechanism and Machine Theory, vol. 145, p.103677, Mar. 2020. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S0094114X19322839

DOI: 10.1016/j.mechmachtheory.2019.103677

Google Scholar

[8] "The Hannes hand prosthesis replicates the key biological properties of the human hand | Science Robotics." [Online]. Available: https://www.science.org/doi/

DOI: 10.1126/scirobotics.abb0467

Google Scholar

[9] "Galileo Hand: An Anthropomorphic and Affordable Upper-Limb Prosthesis | IEEE Journals & Magazine | IEEE Xplore." [Online]. Available: https://ieeexplore.ieee.org/document/9079853

Google Scholar

[10] C. Piazza, M. Catalano, S. Godfrey, M. Rossi, G. Grioli, M. Bianchi, K. Zhao, and A. Bicchi, "The SoftHand Pro-H: A Hybrid Body-Controlled, Electrically Powered Hand Prosthesis for Daily Living and Working," IEEE Robotics & Automation Magazine, vol. 24, no. 4, p.87–101, Dec. 2017, conference Name: IEEE Robotics & Automation Magazine. [Online]. Available: https://ieeexplore.ieee.org/document/8110634

DOI: 10.1109/mra.2017.2751662

Google Scholar

[11] "The Utility of Synthetic Reflexes and Haptic Feedback for Upper-Limb Prostheses in a Dexterous Task Without Direct Vision | IEEE Journals & Magazine | IEEE Xplore." [Online]. Available: https://ieeexplore.ieee.org/document/9942813

DOI: 10.1109/tnsre.2022.3217452

Google Scholar

[12] "Micromachines | Free Full-Text | An Improved Approach for Grasp Force Sensing and Control of Upper Limb Soft Robotic Prosthetics." [Online]. Available: https://www.mdpi.com/ 2072-666X/14/3/596

DOI: 10.3390/mi14030596

Google Scholar

[13] E. Fujiwara, Y. T. Wu, C. K. Suzuki, D. T. G. de Andrade, A. R. Neto, and E. Rohmer, "Optical fiber force myography sensor for applications in prosthetic hand control," in 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Mar. 2018, p.342–347, iSSN: 1943-6580. [Online]. Available: https://ieeexplore.ieee.org/document/8371115

DOI: 10.1109/amc.2019.8371115

Google Scholar

[14] P. Kyberd, A. F. Popa, and T. Cojean, "A Tool to Assist in the Analysis of Gaze Patterns in Upper Limb Prosthetic Use," Prosthesis, vol. 5, no. 3, p.898–915, Sep. 2023, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2673-1592/5/3/63

DOI: 10.3390/prosthesis5030063

Google Scholar

[15] T. Zhang, L. Jiang, and H. Liu, "Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 7, p.1391–1399, Jul. 2018, conference Name: IEEE Transactions on Neural Systems and Rehabilitation Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/8374914

DOI: 10.1109/tnsre.2018.2844807

Google Scholar

[16] M. Alameh, M. Saleh, F. Ansovini, H. Fares, A. Ibrahim, M. Franceschi, L. Seminara, M. Valle, S. Dosen, and D. Farina, "Live Demonstration: System based on Electronic Skin and Cutaneous Electrostimulation for Sensory Feedback in Prosthetics," in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct. 2018, p.1–1, iSSN: 2163-4025. [Online]. Available: https://ieeexplore.ieee.org/document/8584710

DOI: 10.1109/biocas.2018.8584710

Google Scholar

[17] X. Chen, Y. Li, R. Hu, X. Zhang, and X. Chen, "Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method," IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 4, p.1292–1304, Apr. 2021, conference Name: IEEE Journal of Biomedical and Health Informatics. [Online]. Available: https://ieeexplore.ieee.org/document/9141383

DOI: 10.1109/jbhi.2020.3009383

Google Scholar

[18] K. A. Walsh, S. P. Sanford, B. D. Collins, N. Y. Harel, and R. Nataraj, "Performance potential of classical machine learning and deep learning classifiers for isometric upperbody myoelectric control of direction in virtual reality with reduced muscle inputs," Biomedical Signal Processing and Control, vol. 66, p.102487, Apr. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809421000847

DOI: 10.1016/j.bspc.2021.102487

Google Scholar

[19] L. Wu, X. Zhang, X. Zhang, X. Chen, and X. Chen, "Metric learning for novel motion rejection in high-density myoelectric pattern recognition," Knowledge-Based Systems, vol. 227, p.107165, Sep. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0950705121004287

DOI: 10.1016/j.knosys.2021.107165

Google Scholar

[20] A. Leccia, M. Sallam, S. Grazioso, T. Caporaso, G. Di Gironimo, and F. Ficuciello, "Development and testing of a virtual simulator for a myoelectric prosthesis prototype – the PRISMA Hand II – to improve its usability and acceptability," Engineering Applications of Artificial Intelligence, vol. 121, p.105853, May 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197623000374

DOI: 10.1016/j.engappai.2023.105853

Google Scholar

[21] J. Fajardo, V. Ferman, A. Muñoz, D. Andrade, A. Ribas Neto, and E. Rohmer, "User-Prosthesis Interface for Upper Limb Prosthesis Based on Object Classification," Nov. 2018.

DOI: 10.1109/lars/sbr/wre.2018.00076

Google Scholar

[22] M. Kumar, Krishnanand, A. Varshney, and M. Taufik, "Hand prosthetics fabrication using additive manufacturing," Materials Today: Proceedings, Jul. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785323037902

DOI: 10.1016/j.matpr.2023.06.396

Google Scholar

[23] B. Li, S. Zhang, L. Zhang, Y. Gao, and F. Xuan, "Strain sensing behavior of FDM 3D printed carbon black filled TPU with periodic configurations and flexible substrates," Journal of Manufacturing Processes, vol. 74, p.283–295, Feb. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612521009142

DOI: 10.1016/j.jmapro.2021.12.020

Google Scholar

[24] S. Masihi, M. Panahi, D. Maddipatla, A. J. Hanson, S. Fenech, L. Bonek, N. Sapoznik, P. D. Fleming, B. J. Bazuin, and M. Z. Atashbar, "Development of a Flexible Wireless ECG Monitoring Device With Dry Fabric Electrodes for Wearable Applications," IEEE Sensors Journal, vol. 22, no. 12, pp.11-223–11 232, Jun. 2022, conference Name: IEEE Sensors Journal.

DOI: 10.1109/jsen.2021.3116215

Google Scholar

[25] N. Vidakis, M. Petousis, E. Velidakis, M. Liebscher, V. Mechtcherine, and L. Tzounis, "On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers," Polymers, vol. 12, no. 12, p.2924, Dec. 2020, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2073-4360/12/12/2924

DOI: 10.3390/polym12122924

Google Scholar

[26] A. S. Karad, P. D. Sonawwanay, M. Naik, and D. G. Thakur, "Experimental tensile strength analysis of ABS material through FDM technique," Materials Today: Proceedings, Sep. 2023.

DOI: 10.1016/j.matpr.2023.09.216

Google Scholar

[27] K. Xu and S. Qin, "An Interdisciplinary Approach and Advanced Techniques for Enhanced 3D-Printed Upper Limb Prosthetic Socket Design: A Literature Review," Actuators, vol. 12, no. 6, p.223, Jun. 2023, number: 6 Publisher: Multidisciplinary Digital Publishing Institute.

DOI: 10.3390/act12060223

Google Scholar

[28] A. Manero, J. Sparkman, M. Dombrowski, P. Smith, P. Senthil, S. Smith, V. Rivera, and A. Chi, "Evolving 3D-Printing Strategies for Structural and Cosmetic Components in Upper Limb Prosthesis," Prosthesis, vol. 5, no. 1, p.167–181, Mar. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/ 2673-1592/5/1/13

DOI: 10.3390/prosthesis5010013

Google Scholar

[29] M. Semprini, N. Boccardo, A. Lince, S. Traverso, L. Lombardi, A. Succi, M. Canepa, V. Squeri, J. A. Saglia, P. Ariano, L. Reale, P. Randi, S. Castellano, E. Gruppioni, M. Laffranchi, and L. De Michieli, "Chapter 11 - Clinical evaluation of Hannes: measuring the usability of a novel polyarticulated prosthetic hand," in Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation, Q. Li, S. Luo, Z. Chen, C. Yang, and J. Zhang, Eds. Academic Press, Jan. 2022, p.205

DOI: 10.1016/b978-0-32-390445-2.00020-9

Google Scholar

[30] A. Mohammadi, J. Lavranos, Y. Tan, P. Choong, and D. Oetomo, "A Paediatric 3D-Printed Soft Robotic Hand Prosthesis for Children with Upper Limb Loss," in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Jul. 2020, p.3310–3313, iSSN: 2694-0604. [Online]. Available: https://ieeexplore.ieee.org/ document/9176848

DOI: 10.1109/embc44109.2020.9176848

Google Scholar

[31] B. S. Morais, S. L. Nogueira, T. L. Russo, G. L. Santos, L. F. G. Salazar, and A. N. Montagnoli, "Analysis of Myoelectric Signals to Prosthesis Applications," Journal of Physics: Conference Series, vol. 1826, no. 1, p.012084, Mar. 2021, publisher: IOP Publishing. [Online]. Available:

DOI: 10.1088/1742-6596/1826/1/012084

Google Scholar

[32] L. Wu, X. Zhang, K. Wang, X. Chen, and X. Chen, "Improved High-Density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural Network," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 12, p.2637–2646, Dec. 2020, conference Name: IEEE Transactions on Neural Systems and Rehabilitation Engineering. [Online]. Available: https://ieeexplore.ieee. org/document/9223702

DOI: 10.1109/tnsre.2020.3030931

Google Scholar

[33] G. R. Naik, A. H. Al-Timemy, and H. T. Nguyen, "Transradial amputee gesture classification using an optimal number of semg sensors: An approach using ica clustering," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 8, p.837–846, 2016.

DOI: 10.1109/tnsre.2015.2478138

Google Scholar

[34] C. Copeland, C. C. Reyes, J. L. Peck, R. Srivastava, and J. M. Zuniga, "Functional performance and patient satisfaction comparison between a 3D printed and a standard transradial prosthesis: a case report," BioMedical Engineering OnLine, vol. 21, no. 1, p.7, Jan. 2022. [Online]. Available:

DOI: 10.1186/s12938-022-00977-w

Google Scholar

[35] L. Zhang, "A Self-Selected Movement Classification Method for Forearm Via sEMG and Attitude Sensor," Jul. 2020, iSSN: 2693-5015. [Online]. Available: https://www.researchsquare. com/article/rs-37344/v1

DOI: 10.21203/rs.3.rs-37344/v1

Google Scholar

[36] J. M. Zuniga, J. L. Peck, R. Srivastava, J. E. Pierce, D. R. Dudley, N. A. Than, and N. Stergiou, "Functional changes through the usage of 3D-printed transitional prostheses in children," Disability and Rehabilitation: Assistive Technology, vol. 14, no. 1, p.68–74, Jan. 2019, publisher: Taylor & Francis _eprint:. [Online]. Available:

DOI: 10.1080/17483107.2017.1398279

Google Scholar

[37] D. Chappell, H. W. Son, A. B. Clark, Z. Yang, F. Bello, P. Kormushev, and N. Rojas, "Virtual Reality Pre-Prosthetic Hand Training With Physics Simulation and Robotic Force Interaction," IEEE Robotics and Automation Letters, vol. 7, no. 2, p.4550–4557, Apr. 2022, conference Name: IEEE Robotics and Automation Letters. [Online]. Available: https://ieeexplore.ieee.org/document/9714006

DOI: 10.1109/lra.2022.3151569

Google Scholar

[38] G. Li, A. E. Schultz, and T. A. Kuiken, "Quantifying Pattern Recognition—Based Myoelectric Control of Multifunctional Transradial Prostheses," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 2, p.185–192, Apr. 2010, conference Name: IEEE Transactions on Neural Systems and Rehabilitation Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/5378627

DOI: 10.1109/tnsre.2009.2039619

Google Scholar

[39] B. Xu, K. Zhang, X. Yang, D. Liu, C. Hu, H. Li, and A. Song, "Natural grasping movement recognition and force estimation using electromyography," Frontiers in Neuroscience, vol. 16, Oct. 2022, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/journals/ neuroscience/articles/

DOI: 10.3389/fnins.2022.1020086

Google Scholar

[40] X. Liu, J. Wang, T. Han, C. Lou, T. Liang, H. Wang, and X. Liu, "Real-Time Control of Intelligent Prosthetic Hand Based on the Improved TCN," Applied Bionics and Biomechanics, vol. 2022, p. e6488599, May 2022, publisher: Hindawi. [Online]. Available: https://www. hindawi.com/journals/abb/2022/6488599/

DOI: 10.1155/2022/6488599

Google Scholar

[41] J. S. Cuellar, G. Smit, P. Breedveld, A. A. Zadpoor, and D. Plettenburg, "Functional evaluation of a non-assembly 3D-printed hand prosthesis," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 233, no. 11, p.1122–1131, Nov. 2019, publisher: IMECHE. [Online]. Available:

DOI: 10.1177/0954411919874523

Google Scholar

[42] E. Hocaoglu and V. Patoglu, "sEMG-Based Natural Control Interface for a Variable Stiffness Transradial Hand Prosthesis," Frontiers in Neurorobotics, vol. 16, Mar. 2022, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/articles/

DOI: 10.3389/fnbot.2022.789341

Google Scholar

[43] B. D. Winslow, M. Ruble, and Z. Huber, "Mobile, Game-Based Training for Myoelectric Prosthesis Control," Frontiers in Bioengineering and Biotechnology, vol. 6, Jul. 2018, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/articles/

DOI: 10.3389/fbioe.2018.00094

Google Scholar

[44] P. Medina-Coello, B. Salvador-Domínguez, F. J. Badesa, J. M. Rodríguez Corral, H. Plastrotmann, and A. Morgado-Estévez, "Anthropomorphic robotic hand prosthesis developed for children," Biomimetics, vol. 9, no. 7, 2024. [Online]. Available: https://www.mdpi.com/2313-7673/9/7/401

DOI: 10.3390/biomimetics9070401

Google Scholar

[45] G. Fonseca, J. Nunes-Pereira, and A. P. Silva, "3D Printed Robotic Hand with Piezoresistive Touch Capability," Applied Sciences, vol. 13, no. 14, p.8002, Jan. 2023, number: 14 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/ 2076-3417/13/14/8002

DOI: 10.3390/app13148002

Google Scholar

[46] H. Bayoumi, M. I. Awad, and S. A. Maged, "An improved approach for grasp force sensing and control of upper limb soft robotic prosthetics," Micromachines, vol. 14, no. 3, 2023. [Online]. Available: https://www.mdpi.com/2072-666X/14/3/596

DOI: 10.3390/mi14030596

Google Scholar

[47] J. Luis Ordoñez Avila, M. Elena Perdomo, M. Yanire Rivas Bejarano, and J. Luis Ordoñez Fernández, "Mechanical displacement for 3d printers' parts using fem as inverse engineering method in honduras," Journal of Physics: Conference Series, vol. 1877, no. 1, p.012013, apr 2021. [Online]. Available:

DOI: 10.1088/1742-6596/1877/1/012013

Google Scholar