Surface Modification of Commercially Pure Titanium Substrate with Different Coating Materials Using Electrophoretic Deposition Technique

soon available
Article Preview

Abstract:

This work employed biocompatible and antibacterial materials to coat a commercial pure titanium (Cp-Ti) substrate for orthopedic implants applications. Three sorts of coatings were utilized using the electrophoretic deposition (EPD) technique: collagen, yttria-partially stabilized zirconia (YPSZ), and a composite of collagen/YPSZ (denoted as CZ). Surface microstructure before and after coating was examined using scanning electron microscopy (SEM). Results presented that homogeneous and uniform coating layers were successfully deposited on all samples’ surface. A relatively low pores density was observed in the surface microstructure of composite-coated sample (CZ). The chemical composition of coatings was evaluated via energy-dispersive X-ray spectroscopy (EDX), confirming that all spectra matched those of standard materials, with no signs of contaminations. Adhesion strength of coatings was evaluated using a tape test. CZ-coated sample exhibited the smallest removal area at 11.81%, demonstrating superior adhesion strength. Wettability tests were conducted on the Cp-Ti substrate before and after coating. The results showed that the application of the collagen/YPSZ composite coatings significantly enhanced surface wettability by diminishing the contact angle, making the samples surface more hydrophilic. Post-deposition antibacterial activity was estimated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) pathogenic bacteria. All coated samples demonstrated improved antibacterial performance compared to the uncoated Cp-Ti, with the CZ-coated sample exhibiting the largest inhibition zone of 32 mm and 37 mm against both E. coli and S.aureus bacteria respectively.

Info:

Pages:

51-61

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kumar, M., Kumar, R., & Kumar, S. (2021). Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Materials Today: Proceedings, 45, 5269-5276.‏

DOI: 10.1016/j.matpr.2021.01.831

Google Scholar

[2] Peng, B., Xu, H., Song, F., Wen, P., Tian, Y., & Zheng, Y. (2024). Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification. Journal of Materials Science & Technology, 182, 79-110.‏

DOI: 10.1016/j.jmst.2023.08.072

Google Scholar

[3] Shuai, Z. H. A. O., Yang, W. A. N. G., Lin, P. E. N. G., Rong, R. A. N., & Guo, Y. U. A. N. (2022). Effect of annealing temperature on microstructure and mechanical properties of cold-rolled commercially pure titanium sheets. Transactions of Nonferrous Metals Society of China, 32(8), 2587-2597.‏

DOI: 10.1016/s1003-6326(22)65968-5

Google Scholar

[4] Wang, M., Wang, Y., He, Q., Wei, W., Guo, F., Su, W., & Huang, C. (2022). A strong and ductile pure titanium. Materials Science and Engineering: A, 833, 142534.‏

DOI: 10.1016/j.msea.2021.142534

Google Scholar

[5] Sahu, V. K., Chakraborty, P., Yadava, M., & Gurao, N. P. (2024). Micro-mechanisms of anisotropic deformation in the presence of notch in commercially pure Titanium: An in-situ study with CPFEM simulations. International Journal of Plasticity, 177, 103985.‏

DOI: 10.1016/j.ijplas.2024.103985

Google Scholar

[6] Kunrath, M. F., Garaicoa‐Pazmino, C., Giraldo‐Osorno, P. M., Haj Mustafa, A., Dahlin, C., Larsson, L., & Asa'ad, F. (2024). Implant surface modifications and their impact on osseointegration and peri‐implant diseases through epigenetic changes: a scoping review. Journal of Periodontal Research, 59(6), 1095-1114.‏

DOI: 10.1111/jre.13273

Google Scholar

[7] Zhang, L. C., Chen, L. Y., & Wang, L. (2020). Surface modification of titanium and titanium alloys: technologies, developments, and future interests. Advanced Engineering Materials, 22(5), 1901258.‏

DOI: 10.1002/adem.201901258

Google Scholar

[8] Zhu, G., Wang, G., & Li, J. J. (2021). Advances in implant surface modifications to improve osseointegration. Materials Advances, 2(21), 6901-6927.‏

DOI: 10.1039/d1ma00675d

Google Scholar

[9] S Kirmanidou, Y., Sidira, M., Drosou, M. E., Bennani, V., Bakopoulou, A., Tsouknidas, A., & Michalakis, K. (2016). New Ti‐alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review. BioMed research international, 2016(1), 2908570.‏

DOI: 10.1155/2016/2908570

Google Scholar

[10] Chakrabarti, B. K., Gençten, M., Bree, G., Dao, A. H., Mandler, D., & Low, C. T. J. (2022). Modern practices in electrophoretic deposition to manufacture energy storage electrodes. International Journal of Energy Research, 46(10), 13205-13250.‏

DOI: 10.1002/er.8103

Google Scholar

[11] Zhang, H., Liu, Y., Dong, Y., Ashokan, A., Widmer-Cooper, A., Köhler, J., & Mulvaney, P. (2024). Electrophoretic Deposition of Single Nanoparticles. Langmuir, 40(6), 2783-

DOI: 10.1021/acs.langmuir.3c02951

Google Scholar

[12] Manara, S., Paolucci, F., Palazzo, B., Marcaccio, M., Foresti, E., Tosi, G., ... & Roveri, N. (2008). Electrochemically-assisted deposition of biomimetic hydroxyapatite–collagen coatings on titanium plate. Inorganica Chimica Acta, 361(6), 1634-1645.‏

DOI: 10.1016/j.ica.2007.03.044

Google Scholar

[13] Wang, Q. Q., Ma, N., Jiang, B., Gu, Z. W., & Yang, B. C. (2011). Preparation of a HA/collagen film on a bioactive titanium surface by the electrochemical deposition method. Biomedical Materials, 6(5), 055009.‏

DOI: 10.1088/1748-6041/6/5/055009

Google Scholar

[14] Abbas, M., Guo, H., & Shahid, M. R. (2013). Comparative study on effect of oxide thickness on stress distribution of traditional and nanostructured zirconia coating systems. Ceramics International, 39(1), 475-481.‏

DOI: 10.1016/j.ceramint.2012.06.051

Google Scholar

[15] Tape, Sensitive. "Standard test methods for measuring adhesion by tape test1." ASTM International, Pennsylvania, United States (2012).‏

Google Scholar

[16] ASTM D7334-08: Standard practice for surface wettability of coatings, substrates and pigments by advancing contact angle measurement: active standard, Am. Soc. Test. Mater., 08(2013)1–3.

DOI: 10.1520/d8597-24

Google Scholar

[17] Kadhim, Z. J., Al-Hasani, F. J., & Al-hassani, E. S. (2024). In vivo and in vitro biological and histological evaluation of cordierite-hydroxyapatite ceramic grafting powder during maxillary sinus augmentation in rabbit model. Journal of Inorganic and Organometallic Polymers and Materials, 34(1), 401-418.‏

DOI: 10.1007/s10904-023-02833-3

Google Scholar

[18] Kadhim, Z. J., Al-Hasani, F. J., & Al-hassani, E. S. (2023). Investigation the bioactivity of cordierite/hydroxyapatite ceramic material used in bone regeneration. Silicon, 15(15)

DOI: 10.1007/s12633-023-02539-8

Google Scholar

[19] Kadhim, Z. J., Al-Hasani, F. J., & Al-Hassani, E. S. (2024). Preparation and Characterization of Hybrid Composite Material for Maxillary Sinus Augmentation. Silicon, 16(2), 891-907.‏

DOI: 10.1007/s12633-023-02726-7

Google Scholar

[20] Rath, P. C., Singh, B. P., Besra, L., & Bhattacharjee, S. (2012). Multiwalled carbon nanotubes reinforced hydroxyapatite‐chitosan composite coating on Ti metal: corrosion and mechanical properties. Journal of the American Ceramic Society, 95(9), 2725-2731.‏

DOI: 10.1111/j.1551-2916.2012.05195.x

Google Scholar

[21] Gu, H., Wang, C., Gong, S., Mei, Y., Li, H., & Ma, W. (2016). Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surface and Coatings Technology, 292, 72-77.‏

DOI: 10.1016/j.surfcoat.2016.03.014

Google Scholar

[22] Pan, Z., Wu, L., Xie, F., Zhang, Z., Zhao, Z., Esan, O. C., ... & An, L. (2024). Engineered wettability-gradient porous structure enabling efficient water manipulation in regenerative fuel cells. Energy and AI, 17, 100400.‏

DOI: 10.1016/j.egyai.2024.100400

Google Scholar

[23] Wang, W., Zheng, J., Hong, X., Zhou, J., Xiong, Y., Yang, H., ... & Wu, T. (2024). Micro-environment triple-responsive hyaluronic acid hydrogel dressings to promote antibacterial activity, collagen deposition, and angiogenesis for diabetic wound healing. Journal of Materials Chemistry B, 12(19), 4613-4628.

DOI: 10.1039/d4tb00261j

Google Scholar

[24] Kadhim, Z., Shaher, A., Abdali, K., Al-Ali, N., Al-Bermany, E., & Tuama, A. (2025). Insight into the microstructure,optical, dielectric, and biological features of HA@MoS2 reinforced PEO/SA nanocomposite films for optoelectrics, sunscreens, energy storage, and bacterial applications. Journal of inorganic and organometallic polymers and materials

DOI: 10.1007/s10904-025-03805-5

Google Scholar

[25] Shaher, A., Bassem, A., & Salih, W. (2024). In Vivo and In Vitro Biological, Histopathological and Mechanical Investigations of Modified PMMA with Different Nano-additives in Rabbit Model. J Nanostruct, 14(4), 1143-1169. ‏

Google Scholar

[26] Coban, O., Kaymak, F., Gürol, U., & Koçak, M. (2025). Characterization of fillet welded armor steel performed by robotic gas metal arc welding: effect of heat input on microstructure and microhardness. Journal of Materials Engineering and Performance, 34(1), 231-244.‏

DOI: 10.1007/s11665-023-09058-y

Google Scholar

[27] Hajjaj, M. S., Alamoudi, R. A., Babeer, W. A., Rizg, W. Y., Basalah, A. A., Alzahrani, S. J., & Yeslam, H. E. (2024). Flexural strength, flexural modulus and microhardness of milled vs. fused deposition modeling printed Zirconia; effect of conventional vs. speed sintering. BMC Oral Health, 24(1), 38.‏

DOI: 10.1186/s12903-023-03829-8

Google Scholar

[28] Shakirzyanov, R. I., Borgekov, D. B., Garanin, Y. A., Kozlovskiy, A. L., Volodina, N. O., Shlimas, D. I., & Zdorovets, M. V. (2024). Study of phase composition, microstructure and hardness of multicomponent zirconia-based ceramics. Ceramics International, 50(22), 48826-48831.‏

DOI: 10.1016/j.ceramint.2024.09.237

Google Scholar