[1]
Kumar, M., Kumar, R., & Kumar, S. (2021). Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Materials Today: Proceedings, 45, 5269-5276.
DOI: 10.1016/j.matpr.2021.01.831
Google Scholar
[2]
Peng, B., Xu, H., Song, F., Wen, P., Tian, Y., & Zheng, Y. (2024). Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification. Journal of Materials Science & Technology, 182, 79-110.
DOI: 10.1016/j.jmst.2023.08.072
Google Scholar
[3]
Shuai, Z. H. A. O., Yang, W. A. N. G., Lin, P. E. N. G., Rong, R. A. N., & Guo, Y. U. A. N. (2022). Effect of annealing temperature on microstructure and mechanical properties of cold-rolled commercially pure titanium sheets. Transactions of Nonferrous Metals Society of China, 32(8), 2587-2597.
DOI: 10.1016/s1003-6326(22)65968-5
Google Scholar
[4]
Wang, M., Wang, Y., He, Q., Wei, W., Guo, F., Su, W., & Huang, C. (2022). A strong and ductile pure titanium. Materials Science and Engineering: A, 833, 142534.
DOI: 10.1016/j.msea.2021.142534
Google Scholar
[5]
Sahu, V. K., Chakraborty, P., Yadava, M., & Gurao, N. P. (2024). Micro-mechanisms of anisotropic deformation in the presence of notch in commercially pure Titanium: An in-situ study with CPFEM simulations. International Journal of Plasticity, 177, 103985.
DOI: 10.1016/j.ijplas.2024.103985
Google Scholar
[6]
Kunrath, M. F., Garaicoa‐Pazmino, C., Giraldo‐Osorno, P. M., Haj Mustafa, A., Dahlin, C., Larsson, L., & Asa'ad, F. (2024). Implant surface modifications and their impact on osseointegration and peri‐implant diseases through epigenetic changes: a scoping review. Journal of Periodontal Research, 59(6), 1095-1114.
DOI: 10.1111/jre.13273
Google Scholar
[7]
Zhang, L. C., Chen, L. Y., & Wang, L. (2020). Surface modification of titanium and titanium alloys: technologies, developments, and future interests. Advanced Engineering Materials, 22(5), 1901258.
DOI: 10.1002/adem.201901258
Google Scholar
[8]
Zhu, G., Wang, G., & Li, J. J. (2021). Advances in implant surface modifications to improve osseointegration. Materials Advances, 2(21), 6901-6927.
DOI: 10.1039/d1ma00675d
Google Scholar
[9]
S Kirmanidou, Y., Sidira, M., Drosou, M. E., Bennani, V., Bakopoulou, A., Tsouknidas, A., & Michalakis, K. (2016). New Ti‐alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review. BioMed research international, 2016(1), 2908570.
DOI: 10.1155/2016/2908570
Google Scholar
[10]
Chakrabarti, B. K., Gençten, M., Bree, G., Dao, A. H., Mandler, D., & Low, C. T. J. (2022). Modern practices in electrophoretic deposition to manufacture energy storage electrodes. International Journal of Energy Research, 46(10), 13205-13250.
DOI: 10.1002/er.8103
Google Scholar
[11]
Zhang, H., Liu, Y., Dong, Y., Ashokan, A., Widmer-Cooper, A., Köhler, J., & Mulvaney, P. (2024). Electrophoretic Deposition of Single Nanoparticles. Langmuir, 40(6), 2783-
DOI: 10.1021/acs.langmuir.3c02951
Google Scholar
[12]
Manara, S., Paolucci, F., Palazzo, B., Marcaccio, M., Foresti, E., Tosi, G., ... & Roveri, N. (2008). Electrochemically-assisted deposition of biomimetic hydroxyapatite–collagen coatings on titanium plate. Inorganica Chimica Acta, 361(6), 1634-1645.
DOI: 10.1016/j.ica.2007.03.044
Google Scholar
[13]
Wang, Q. Q., Ma, N., Jiang, B., Gu, Z. W., & Yang, B. C. (2011). Preparation of a HA/collagen film on a bioactive titanium surface by the electrochemical deposition method. Biomedical Materials, 6(5), 055009.
DOI: 10.1088/1748-6041/6/5/055009
Google Scholar
[14]
Abbas, M., Guo, H., & Shahid, M. R. (2013). Comparative study on effect of oxide thickness on stress distribution of traditional and nanostructured zirconia coating systems. Ceramics International, 39(1), 475-481.
DOI: 10.1016/j.ceramint.2012.06.051
Google Scholar
[15]
Tape, Sensitive. "Standard test methods for measuring adhesion by tape test1." ASTM International, Pennsylvania, United States (2012).
Google Scholar
[16]
ASTM D7334-08: Standard practice for surface wettability of coatings, substrates and pigments by advancing contact angle measurement: active standard, Am. Soc. Test. Mater., 08(2013)1–3.
DOI: 10.1520/d8597-24
Google Scholar
[17]
Kadhim, Z. J., Al-Hasani, F. J., & Al-hassani, E. S. (2024). In vivo and in vitro biological and histological evaluation of cordierite-hydroxyapatite ceramic grafting powder during maxillary sinus augmentation in rabbit model. Journal of Inorganic and Organometallic Polymers and Materials, 34(1), 401-418.
DOI: 10.1007/s10904-023-02833-3
Google Scholar
[18]
Kadhim, Z. J., Al-Hasani, F. J., & Al-hassani, E. S. (2023). Investigation the bioactivity of cordierite/hydroxyapatite ceramic material used in bone regeneration. Silicon, 15(15)
DOI: 10.1007/s12633-023-02539-8
Google Scholar
[19]
Kadhim, Z. J., Al-Hasani, F. J., & Al-Hassani, E. S. (2024). Preparation and Characterization of Hybrid Composite Material for Maxillary Sinus Augmentation. Silicon, 16(2), 891-907.
DOI: 10.1007/s12633-023-02726-7
Google Scholar
[20]
Rath, P. C., Singh, B. P., Besra, L., & Bhattacharjee, S. (2012). Multiwalled carbon nanotubes reinforced hydroxyapatite‐chitosan composite coating on Ti metal: corrosion and mechanical properties. Journal of the American Ceramic Society, 95(9), 2725-2731.
DOI: 10.1111/j.1551-2916.2012.05195.x
Google Scholar
[21]
Gu, H., Wang, C., Gong, S., Mei, Y., Li, H., & Ma, W. (2016). Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surface and Coatings Technology, 292, 72-77.
DOI: 10.1016/j.surfcoat.2016.03.014
Google Scholar
[22]
Pan, Z., Wu, L., Xie, F., Zhang, Z., Zhao, Z., Esan, O. C., ... & An, L. (2024). Engineered wettability-gradient porous structure enabling efficient water manipulation in regenerative fuel cells. Energy and AI, 17, 100400.
DOI: 10.1016/j.egyai.2024.100400
Google Scholar
[23]
Wang, W., Zheng, J., Hong, X., Zhou, J., Xiong, Y., Yang, H., ... & Wu, T. (2024). Micro-environment triple-responsive hyaluronic acid hydrogel dressings to promote antibacterial activity, collagen deposition, and angiogenesis for diabetic wound healing. Journal of Materials Chemistry B, 12(19), 4613-4628.
DOI: 10.1039/d4tb00261j
Google Scholar
[24]
Kadhim, Z., Shaher, A., Abdali, K., Al-Ali, N., Al-Bermany, E., & Tuama, A. (2025). Insight into the microstructure,optical, dielectric, and biological features of HA@MoS2 reinforced PEO/SA nanocomposite films for optoelectrics, sunscreens, energy storage, and bacterial applications. Journal of inorganic and organometallic polymers and materials
DOI: 10.1007/s10904-025-03805-5
Google Scholar
[25]
Shaher, A., Bassem, A., & Salih, W. (2024). In Vivo and In Vitro Biological, Histopathological and Mechanical Investigations of Modified PMMA with Different Nano-additives in Rabbit Model. J Nanostruct, 14(4), 1143-1169.
Google Scholar
[26]
Coban, O., Kaymak, F., Gürol, U., & Koçak, M. (2025). Characterization of fillet welded armor steel performed by robotic gas metal arc welding: effect of heat input on microstructure and microhardness. Journal of Materials Engineering and Performance, 34(1), 231-244.
DOI: 10.1007/s11665-023-09058-y
Google Scholar
[27]
Hajjaj, M. S., Alamoudi, R. A., Babeer, W. A., Rizg, W. Y., Basalah, A. A., Alzahrani, S. J., & Yeslam, H. E. (2024). Flexural strength, flexural modulus and microhardness of milled vs. fused deposition modeling printed Zirconia; effect of conventional vs. speed sintering. BMC Oral Health, 24(1), 38.
DOI: 10.1186/s12903-023-03829-8
Google Scholar
[28]
Shakirzyanov, R. I., Borgekov, D. B., Garanin, Y. A., Kozlovskiy, A. L., Volodina, N. O., Shlimas, D. I., & Zdorovets, M. V. (2024). Study of phase composition, microstructure and hardness of multicomponent zirconia-based ceramics. Ceramics International, 50(22), 48826-48831.
DOI: 10.1016/j.ceramint.2024.09.237
Google Scholar