Green Tea Catechin@ZIF-8 Encapsulation within Calcium Alginate Hydrogel: Preparation, Characterization and In-Vitro Release

soon available
Article Preview

Abstract:

Catechins, naturally derived from green tea leaves, are potent antioxidants known for their anti-inflammatory, antimicrobial, anticancer, cardiovascular, and antidiabetic properties. In this study, green tea catechin was successfully encapsulated within a zeolitic imidazolate framework-8 (cate@ZIF-8) and further incorporated into a calcium alginate hydrogel to improve its stability and bioavailability. The system's encapsulation efficiency, structural properties, and release behavior were comprehensively analyzed. X-ray diffraction (XRD) confirmed that the crystalline structure of ZIF-8 remained intact after catechin encapsulation, while Fourier transform infrared spectroscopy (FT-IR) indicated specific interactions between catechin molecules and the ZIF-8 framework. Scanning electron microscopy (SEM) was employed to examine the morphology of the cate@ZIF-8 particles within the alginate hydrogel matrix. Catechin release studies under different pH conditions demonstrated a controlled release profile, especially in acidic environments. These findings underscore the potential of alginate-embedded cate@ZIF-8 hydrogels as an effective platform for sustained catechin delivery in therapeutic applications.

Info:

Pages:

15-26

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Zhao, C. Li, S. Wang, X. Song, Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology, Molecules 27 (2022) 3909.

DOI: 10.3390/molecules27123909

Google Scholar

[2] D. Hinojosa-Nogueira, S. Pérez-Burillo, S. Pastoriza de la Cueva, J.Á. Rufián-Henares, Green and white teas as health-promoting foods, Food Funct 12 (2021) 3799–3819.

DOI: 10.1039/d1fo00261a

Google Scholar

[3] C. Musial, A. Kuban-Jankowska, M. Gorska-Ponikowska, Beneficial Properties of Green Tea Catechins, Int J Mol Sci 21 (2020) 1744.

DOI: 10.3390/ijms21051744

Google Scholar

[4] N. Bibi Sadeer, D. Montesano, S. Albrizio, G. Zengin, M.F. Mahomoodally, The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations, Antioxidants 9 (2020) 709.

DOI: 10.3390/antiox9080709

Google Scholar

[5] M. Farhan, Green Tea Catechins: Nature's Way of Preventing and Treating Cancer, Int J Mol Sci 23 (2022) 10713.

DOI: 10.3390/ijms231810713

Google Scholar

[6] S. Ratnani, S. Malik, Therapeutic Properties of Green Tea: A Review, Journal of Multidisciplinary Applied Natural Science 2 (2022) 90–102.

DOI: 10.47352/jmans.2774-3047.117

Google Scholar

[7] V.V.L. Nguyen, G.Q.N. Pham, T.H.A. Nguyen, V.C. Nguyen, Fabrication and Characterization of Alginate Hydrogels for Control Release System of Catechin-Derived Tea Leave Extract, Journal of Biomimetics, Biomaterials and Biomedical Engineering 58 (2022) 97–107.

DOI: 10.4028/p-63176q

Google Scholar

[8] G. Zhang, X. Bi, R. Wang, Z. Yin, Y. Zheng, X. Peng, N. Jia, D. Liu, Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil–water interface, Food Chem 442 (2024) 138478.

DOI: 10.1016/j.foodchem.2024.138478

Google Scholar

[9] C. Li, X. Ding, J. Li, S. Yan, Effects of different concentrations of ascorbic acid on the stability of (+) – Catechin under enzymatic conditions, Food Chem 399 (2023) 133933.

DOI: 10.1016/j.foodchem.2022.133933

Google Scholar

[10] A. Noor, M. Al Murad, A. Jaya Chitra, S.N. Babu, S. Govindarajan, Alginate based encapsulation of polyphenols of Piper betel leaves: Development, stability, bio-accessibility and biological activities, Food Biosci 47 (2022) 101715.

DOI: 10.1016/j.fbio.2022.101715

Google Scholar

[11] O. Bayraktar, G. Oder, C. Erdem, M.D. Kose, C.N. Cheaburu-Yilmaz, Selective Encapsulation of the Polyphenols on Silk Fibroin Nanoparticles: Optimization Approaches, Int J Mol Sci 24 (2023) 9327.

DOI: 10.3390/ijms24119327

Google Scholar

[12] M. Sabaghi, S.Z. Hoseyni, S. Tavasoli, M.R. Mozafari, I. Katouzian, Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review, Colloids Surf B Biointerfaces 204 (2021) 111781.

DOI: 10.1016/j.colsurfb.2021.111781

Google Scholar

[13] D. Ma, G. Wang, J. Lu, X. Zeng, Y. Cheng, Z. Zhang, N. Lin, Q. Chen, Multifunctional nano MOF drug delivery platform in combination therapy, Eur J Med Chem 261 (2023) 115884.

DOI: 10.1016/j.ejmech.2023.115884

Google Scholar

[14] J. Cao, X. Li, H. Tian, Metal-Organic Framework (MOF)-Based Drug Delivery, Curr Med Chem 27 (2020) 5949–5969.

DOI: 10.2174/0929867326666190618152518

Google Scholar

[15] S. Feng, X. Zhang, D. Shi, Z. Wang, Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review, Front Chem Sci Eng 15 (2021) 221–237.

DOI: 10.1007/s11705-020-1927-8

Google Scholar

[16] X. Yan, Y. Li, X. Hu, R. Feng, M. Zhou, D. Han, Enhanced adsorption of phenol from aqueous solution by carbonized trace ZIF-8-decorated activated carbon pellets, Chin J Chem Eng 33 (2021) 279–285.

DOI: 10.1016/j.cjche.2020.06.027

Google Scholar

[17] N. Jannatun, Y. Zhang, B. Wu, Q. Song, G. Cao, W. Luo, F. Yuan, Q. Li, Y. Zeng, G. Zhang, G. Wang, Y. Li, Tea Polyphenol Coordinated with Nanoparticles of ZIF-8 and Coated with Polydopamine and PEG for Immuno-Oncotherapy, ACS Appl Nano Mater 6 (2023) 4379–4389.

DOI: 10.1021/acsanm.2c05472

Google Scholar

[18] J.-H. Ye, M.A. Augustin, Nano- and micro-particles for delivery of catechins: Physical and biological performance, Crit Rev Food Sci Nutr 59 (2019) 1563–1579.

DOI: 10.1080/10408398.2017.1422110

Google Scholar

[19] S.B. Khan, S. Ahmad, T. Kamal, A.M. Asiri, E.M. Bakhsh, Metal nanoparticles decorated sodium alginate-carbon nitride composite beads as effective catalyst for the reduction of organic pollutants, Int J Biol Macromol 164 (2020) 1087–1098.

DOI: 10.1016/j.ijbiomac.2020.07.091

Google Scholar

[20] A. Parvaresh, Z. Izadi, H. Nemati, H. Derakhshankhah, M. Jaymand, Redox- and pH-responsive alginate-based magnetic hydrogel: "Smart" drug delivery and protein corona studies, J Mol Liq 382 (2023) 121990.

DOI: 10.1016/j.molliq.2023.121990

Google Scholar

[21] F. Abasalizadeh, S.V. Moghaddam, E. Alizadeh, E. akbari, E. Kashani, S.M.B. Fazljou, M. Torbati, A. Akbarzadeh, Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting, J Biol Eng 14 (2020) 8.

DOI: 10.1186/s13036-020-00239-0

Google Scholar

[22] P. Amin, A. Shojaei, T. Hamzehlouyan, ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments, Microporous and Mesoporous Materials 343 (2022) 112149.

DOI: 10.1016/j.micromeso.2022.112149

Google Scholar

[23] N. Yunarto, C.C. Calvin, I. Sulistyowati, I.S. Oktoberia, U.N. Reswandaru, B. Elya, R. Sauriasari, L.K. Mihardja, Development and Validation of a High-Performance Liquid Chromatography-Based Method for Catechin Isolated from the Leaves of Gambir (Uncaria gambir Roxb), Tropical Journal of Natural Product Research 7 (2023) 2569–2573.

DOI: 10.26538/tjnpr/v7i3.16

Google Scholar

[24] C. Fongsuk, P. Wongmanit, K. Pansuksan, Effect of Plant Stage and Solvent Extraction on Catechin Contents in Borrasus flabellifer L. Male Flower, Pharmacognosy Journal 15 (2024) 1036–1041.

DOI: 10.5530/pj.2023.15.190

Google Scholar

[25] Z. Hu, H. Zhang, X.F. Zhang, M. Jia, J. Yao, Polyethylenimine grafted ZIF-8@cellulose acetate membrane for enhanced gas separation, J Memb Sci 662 (2022) 120996.

DOI: 10.1016/j.memsci.2022.120996

Google Scholar

[26] J. Xia, D. Wang, P. Liang, D. Zhang, X. Du, D. Ni, Z. Yu, Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments, Biophys Chem 256 (2020) 106282.

DOI: 10.1016/j.bpc.2019.106282

Google Scholar

[27] A. Bušić, A. Belščak-Cvitanović, A. Vojvodić Cebin, S. Karlović, V. Kovač, I. Špoljarić, G. Mršić, D. Komes, Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials, Food Research International 111 (2018) 244–255.

DOI: 10.1016/j.foodres.2018.05.034

Google Scholar

[28] Y. Wang, X. Dai, Y. Zhan, X. Ding, M. Wang, X. Wang, In situ growth of ZIF-8 nanoparticles on chitosan to form the hybrid nanocomposites for high-efficiency removal of Congo Red, Int J Biol Macromol 137 (2019) 77–86.

DOI: 10.1016/j.ijbiomac.2019.06.195

Google Scholar

[29] H. You, J. Li, C. Zhou, B. Liu, Y. Zhang, A honeycomb composite of mollusca shell matrix and calcium alginate, Colloids Surf B Biointerfaces 139 (2016) 100–106.

DOI: 10.1016/j.colsurfb.2015.12.006

Google Scholar

[30] E.S. Kim, J.-S. Lee, H.G. Lee, Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique, Food Sci Biotechnol 25 (2016) 1337–1343.

DOI: 10.1007/s10068-016-0210-8

Google Scholar

[31] M. Salehi, A. Ehterami, S. Farzamfar, A. Vaez, S. Ebrahimi-Barough, Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model, Drug Deliv Transl Res 11 (2021) 142–153.

DOI: 10.1007/s13346-020-00731-6

Google Scholar

[32] Y.-C. Chen, S.-H. Yu, G.-J. Tsai, D.-W. Tang, F.-L. Mi, Y.-P. Peng, Novel Technology for the Preparation of Self-Assembled Catechin/Gelatin Nanoparticles and Their Characterization, J Agric Food Chem 58 (2010) 6728–6734.

DOI: 10.1021/jf1005116

Google Scholar