[1]
T. Zhao, C. Li, S. Wang, X. Song, Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology, Molecules 27 (2022) 3909.
DOI: 10.3390/molecules27123909
Google Scholar
[2]
D. Hinojosa-Nogueira, S. Pérez-Burillo, S. Pastoriza de la Cueva, J.Á. Rufián-Henares, Green and white teas as health-promoting foods, Food Funct 12 (2021) 3799–3819.
DOI: 10.1039/d1fo00261a
Google Scholar
[3]
C. Musial, A. Kuban-Jankowska, M. Gorska-Ponikowska, Beneficial Properties of Green Tea Catechins, Int J Mol Sci 21 (2020) 1744.
DOI: 10.3390/ijms21051744
Google Scholar
[4]
N. Bibi Sadeer, D. Montesano, S. Albrizio, G. Zengin, M.F. Mahomoodally, The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations, Antioxidants 9 (2020) 709.
DOI: 10.3390/antiox9080709
Google Scholar
[5]
M. Farhan, Green Tea Catechins: Nature's Way of Preventing and Treating Cancer, Int J Mol Sci 23 (2022) 10713.
DOI: 10.3390/ijms231810713
Google Scholar
[6]
S. Ratnani, S. Malik, Therapeutic Properties of Green Tea: A Review, Journal of Multidisciplinary Applied Natural Science 2 (2022) 90–102.
DOI: 10.47352/jmans.2774-3047.117
Google Scholar
[7]
V.V.L. Nguyen, G.Q.N. Pham, T.H.A. Nguyen, V.C. Nguyen, Fabrication and Characterization of Alginate Hydrogels for Control Release System of Catechin-Derived Tea Leave Extract, Journal of Biomimetics, Biomaterials and Biomedical Engineering 58 (2022) 97–107.
DOI: 10.4028/p-63176q
Google Scholar
[8]
G. Zhang, X. Bi, R. Wang, Z. Yin, Y. Zheng, X. Peng, N. Jia, D. Liu, Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil–water interface, Food Chem 442 (2024) 138478.
DOI: 10.1016/j.foodchem.2024.138478
Google Scholar
[9]
C. Li, X. Ding, J. Li, S. Yan, Effects of different concentrations of ascorbic acid on the stability of (+) – Catechin under enzymatic conditions, Food Chem 399 (2023) 133933.
DOI: 10.1016/j.foodchem.2022.133933
Google Scholar
[10]
A. Noor, M. Al Murad, A. Jaya Chitra, S.N. Babu, S. Govindarajan, Alginate based encapsulation of polyphenols of Piper betel leaves: Development, stability, bio-accessibility and biological activities, Food Biosci 47 (2022) 101715.
DOI: 10.1016/j.fbio.2022.101715
Google Scholar
[11]
O. Bayraktar, G. Oder, C. Erdem, M.D. Kose, C.N. Cheaburu-Yilmaz, Selective Encapsulation of the Polyphenols on Silk Fibroin Nanoparticles: Optimization Approaches, Int J Mol Sci 24 (2023) 9327.
DOI: 10.3390/ijms24119327
Google Scholar
[12]
M. Sabaghi, S.Z. Hoseyni, S. Tavasoli, M.R. Mozafari, I. Katouzian, Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review, Colloids Surf B Biointerfaces 204 (2021) 111781.
DOI: 10.1016/j.colsurfb.2021.111781
Google Scholar
[13]
D. Ma, G. Wang, J. Lu, X. Zeng, Y. Cheng, Z. Zhang, N. Lin, Q. Chen, Multifunctional nano MOF drug delivery platform in combination therapy, Eur J Med Chem 261 (2023) 115884.
DOI: 10.1016/j.ejmech.2023.115884
Google Scholar
[14]
J. Cao, X. Li, H. Tian, Metal-Organic Framework (MOF)-Based Drug Delivery, Curr Med Chem 27 (2020) 5949–5969.
DOI: 10.2174/0929867326666190618152518
Google Scholar
[15]
S. Feng, X. Zhang, D. Shi, Z. Wang, Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review, Front Chem Sci Eng 15 (2021) 221–237.
DOI: 10.1007/s11705-020-1927-8
Google Scholar
[16]
X. Yan, Y. Li, X. Hu, R. Feng, M. Zhou, D. Han, Enhanced adsorption of phenol from aqueous solution by carbonized trace ZIF-8-decorated activated carbon pellets, Chin J Chem Eng 33 (2021) 279–285.
DOI: 10.1016/j.cjche.2020.06.027
Google Scholar
[17]
N. Jannatun, Y. Zhang, B. Wu, Q. Song, G. Cao, W. Luo, F. Yuan, Q. Li, Y. Zeng, G. Zhang, G. Wang, Y. Li, Tea Polyphenol Coordinated with Nanoparticles of ZIF-8 and Coated with Polydopamine and PEG for Immuno-Oncotherapy, ACS Appl Nano Mater 6 (2023) 4379–4389.
DOI: 10.1021/acsanm.2c05472
Google Scholar
[18]
J.-H. Ye, M.A. Augustin, Nano- and micro-particles for delivery of catechins: Physical and biological performance, Crit Rev Food Sci Nutr 59 (2019) 1563–1579.
DOI: 10.1080/10408398.2017.1422110
Google Scholar
[19]
S.B. Khan, S. Ahmad, T. Kamal, A.M. Asiri, E.M. Bakhsh, Metal nanoparticles decorated sodium alginate-carbon nitride composite beads as effective catalyst for the reduction of organic pollutants, Int J Biol Macromol 164 (2020) 1087–1098.
DOI: 10.1016/j.ijbiomac.2020.07.091
Google Scholar
[20]
A. Parvaresh, Z. Izadi, H. Nemati, H. Derakhshankhah, M. Jaymand, Redox- and pH-responsive alginate-based magnetic hydrogel: "Smart" drug delivery and protein corona studies, J Mol Liq 382 (2023) 121990.
DOI: 10.1016/j.molliq.2023.121990
Google Scholar
[21]
F. Abasalizadeh, S.V. Moghaddam, E. Alizadeh, E. akbari, E. Kashani, S.M.B. Fazljou, M. Torbati, A. Akbarzadeh, Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting, J Biol Eng 14 (2020) 8.
DOI: 10.1186/s13036-020-00239-0
Google Scholar
[22]
P. Amin, A. Shojaei, T. Hamzehlouyan, ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments, Microporous and Mesoporous Materials 343 (2022) 112149.
DOI: 10.1016/j.micromeso.2022.112149
Google Scholar
[23]
N. Yunarto, C.C. Calvin, I. Sulistyowati, I.S. Oktoberia, U.N. Reswandaru, B. Elya, R. Sauriasari, L.K. Mihardja, Development and Validation of a High-Performance Liquid Chromatography-Based Method for Catechin Isolated from the Leaves of Gambir (Uncaria gambir Roxb), Tropical Journal of Natural Product Research 7 (2023) 2569–2573.
DOI: 10.26538/tjnpr/v7i3.16
Google Scholar
[24]
C. Fongsuk, P. Wongmanit, K. Pansuksan, Effect of Plant Stage and Solvent Extraction on Catechin Contents in Borrasus flabellifer L. Male Flower, Pharmacognosy Journal 15 (2024) 1036–1041.
DOI: 10.5530/pj.2023.15.190
Google Scholar
[25]
Z. Hu, H. Zhang, X.F. Zhang, M. Jia, J. Yao, Polyethylenimine grafted ZIF-8@cellulose acetate membrane for enhanced gas separation, J Memb Sci 662 (2022) 120996.
DOI: 10.1016/j.memsci.2022.120996
Google Scholar
[26]
J. Xia, D. Wang, P. Liang, D. Zhang, X. Du, D. Ni, Z. Yu, Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments, Biophys Chem 256 (2020) 106282.
DOI: 10.1016/j.bpc.2019.106282
Google Scholar
[27]
A. Bušić, A. Belščak-Cvitanović, A. Vojvodić Cebin, S. Karlović, V. Kovač, I. Špoljarić, G. Mršić, D. Komes, Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials, Food Research International 111 (2018) 244–255.
DOI: 10.1016/j.foodres.2018.05.034
Google Scholar
[28]
Y. Wang, X. Dai, Y. Zhan, X. Ding, M. Wang, X. Wang, In situ growth of ZIF-8 nanoparticles on chitosan to form the hybrid nanocomposites for high-efficiency removal of Congo Red, Int J Biol Macromol 137 (2019) 77–86.
DOI: 10.1016/j.ijbiomac.2019.06.195
Google Scholar
[29]
H. You, J. Li, C. Zhou, B. Liu, Y. Zhang, A honeycomb composite of mollusca shell matrix and calcium alginate, Colloids Surf B Biointerfaces 139 (2016) 100–106.
DOI: 10.1016/j.colsurfb.2015.12.006
Google Scholar
[30]
E.S. Kim, J.-S. Lee, H.G. Lee, Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique, Food Sci Biotechnol 25 (2016) 1337–1343.
DOI: 10.1007/s10068-016-0210-8
Google Scholar
[31]
M. Salehi, A. Ehterami, S. Farzamfar, A. Vaez, S. Ebrahimi-Barough, Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model, Drug Deliv Transl Res 11 (2021) 142–153.
DOI: 10.1007/s13346-020-00731-6
Google Scholar
[32]
Y.-C. Chen, S.-H. Yu, G.-J. Tsai, D.-W. Tang, F.-L. Mi, Y.-P. Peng, Novel Technology for the Preparation of Self-Assembled Catechin/Gelatin Nanoparticles and Their Characterization, J Agric Food Chem 58 (2010) 6728–6734.
DOI: 10.1021/jf1005116
Google Scholar